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Abstract

An emerging use of GPS is to provide accurate navigation information for
satellites in orbit. The GPS satellites are designed to provide service to terrestrial users,
so the antenna array points directly towards the Earth and uses a narrow primary
beamwidth. Because GEO altitudes are well above the GPS constellation, the Earth
occludes most of the GPS signals to the satellite. Decreased satellite visibility is
debilitating, as GPS navigation requires at least four visible satellites to determine
position. To assist with the visibility problem, the receiver can look at the GPS satellite
transmit antenna side lobes, but this does not entirely solve the navigation problem. GPS
measurements are inherently bound by receiver clock errors. The clock error must be
known or estimated in order to obtain meaningful ranging information. To obtain three-
dimensional positioning, at least four satellites must be tracked to solve for three
dimensions of position plus the receiver clock error.

A new method for improving geostationary navigation accuracy using GPS is to
correct the time error by including Two-Way Time Transfer (TWTT) measurements.
TWTT is a technique in which signals are simultaneously exchanged between two clocks,
and is one of the most accurate methods of comparing clocks. By effectively removing
the clock error between the GPS satellite and the GPS receiver, TWTT allows meaningful
information to be gathered when less than four GPS satellites are available. The results
show a 21-38% improvement in the 3-D RMS position accuracy while using TWTT
between the GEO satellite and an atomic clock on the ground. There was a 60-70%

improvement when the clock on the ground was synchronized to GPS time.
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USE OF TWO-WAY TIME TRANSFER MEASUREMENTS TO IMPROVE

GEOSTATIONARY SATELLITE NAVIGATION

1 Introduction

1.1 Overview

The Global Positioning System (GPS) was developed by the United States
Department of Defense to provide precise position, velocity, and time measurements to
military users around the globe. Such information would provide U.S. military forces an
unparalleled advantage among adversaries, allowing accurate navigation in any weather
conditions during day or night operations. Upon initial operational capability on
December 8, 1991 [17], civilian use of the GPS signal was intentionally corrupted with
random error, allowing only the military users to have precise navigation. On May 2,
2000, the full accuracy of civilian GPS was made freely available to users of every nation
[16]. TIts role in daily life has broadened at a rapid rate, and now much of modern
infrastructure is dependent upon GPS. Because of the growing reliance on GPS, users
demand increased precision from the system.

An emerging use of GPS is to provide accurate navigation information for
satellites in orbit. Previously, radar and optical range measurements to the satellite from
the ground were collected, allowing operators to determine the position of the satellite.
With GPS, the satellite can carry a receiver and calculate its own position using the GPS
signals, eliminating the numerous ground stations and support costs. Additionally, GPS
navigation allows the satellite to operate with a certain level of autonomy in station-

keeping, making orbital corrections without the need for ground interaction. GPS



navigation is effective for satellites in Low Earth Orbit (LEO), but satellites operating in
Geosynchronous Orbit (GEO) or Highly Elliptical Orbit (HEO) experience extreme
performance degradation, for reasons described below.

GPS measurements are inherently bound by receiver clock errors. The clock error
must be known or estimated in order to obtain meaningful ranging information. To
obtain three-dimensional positioning, at least four satellites must be tracked to solve for
three dimensions of position plus the receiver clock error. Because the receiver clock
error can be estimated with four measurements, a user can have a very poor local clock
attached to their receiver and still have accurate positioning.

The GPS satellites (approximately 20,200 kilometers altitude) are designed to
provide service to terrestrial users, so the antenna array points directly towards the Earth
and uses a narrow primary beamwidth. Because GEO (approximately 35,000 kilometers
altitude) and HEO altitudes are well above the GPS constellation, the Earth occludes
most of the GPS signals to the satellite. Decreased satellite visibility can be debilitating,
as GPS navigation requires at least four visible satellites to determine position.

As a solution to the visibility problem, the receiver can look at more than just the
primary GPS transmit beam that is intended for terrestrial use. The GPS transmit
antennas have side lobes, shown in Figure 1.1, though at much lower power levels than
the primary beam. These side lobes provide increased visibility for GEO and HEO

satellites and are a requirement for high-altitude navigation.
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Figure 1.1: GPS Signal Reception at GEO and HEO Orbital Altitudes [1]

A current method for GPS navigation in high-altitude orbits is to use high-
sensitivity GPS receivers and more powerful signal acquisition engines [1]. By
increasing the sensitivity of the receiver, the very weak GPS signals become usable and
the number of visible satellites increases, allowing for more precise positioning.

A new method for improving geostationary navigation accuracy using GPS is to
correct the time error by including Two-Way Time Transfer measurements. Two-Way
Time Transfer (TWTT) is a technique in which signals are simultaneously exchanged
between two clocks. If the distance between the two clocks is equal, such as static
clocks, the propagation delays cancel and the difference between the two clocks can be

precisely measured [13]. Dynamic TWTT allows simultaneous signal exchanges to occur



between moving clocks, allowing vehicles, such as airplanes or satellites, to take
advantage of TWTT [2]. TWTT is one of the most accurate methods of comparing
clocks, so it can be used to create more accurate positioning using GPS by effectively
removing the clock error between the GPS satellite and the GPS receiver. Using TWTT
measurements, the clock error could be resolved, allowing less than four visible GPS

satellites to provide meaningful ranging information.

1.2 Related Research

1.2.1 GPS Measurements Collected from Geosynchronous Transfer Orbit

A group of students at the United States Air Force Academy designed and
constructed the “Falcon Gold” experiment that flew in 1997. The goal of this project was
to measure GPS signals at high orbital altitudes using low-cost, low-power, off-the-shelf
components [19]. The purpose was to test concepts, not to collect high-quality data.

The Falcon Gold experiment was a secondary payload on a DSCS spacecraft
launch and was attached the side of the Centaur upper stage. Once the DSCS spacecraft
separated from the upper stage and maneuvered into a geosynchronous orbit, the upper
stage continued to orbit in a geosynchronous transfer orbit (GTO). The GTO orbit
apogee and perigee were 35,200 and 200 kilometers, respectively, allowing the Falcon
Gold to collect measurement data above and below the GPS constellation.

The experiment used an inexpensive two-inch patch antenna for the GPS receiver,
which was modeled and used in this research simulation. Because of the hardware setup
and limited ground link ability, only intermittent data could be collected. A total of 12

data frames were collected, detecting 25 PRN signals, as seen in Figure 1.2.
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Figure 1.2: Falcon Gold GPS Signal Detection Locations [19]

The Falcon Gold experiment is one of the first examples of GPS signal detection
at altitudes above the GPS constellation [19]. The future quality of performance can only
improve, since Falcon Gold was able to achieve these capabilities by using only low-cost,
low-power hardware. This demonstration was an important step in the progression of
GPS-enabled satellites in high-altitude orbits.

The Falcon Gold experiment was also able to detect GPS sidelobe signals. This is
very important for applications that could benefit from the extended coverage offered by
sidelobe signals, such as high-altitude GPS positioning. New concepts may now be fully
explored without hesitation, since the physical act of detecting sidelobes signals has been

proven through experimentation.

1.2.2  High-Sensitivity GPS Receivers Built for GEO Operation

The National Aeronautics and Space Administration (NASA) developed a highly

sensitive GPS receiver for use in geosynchronous orbits that is designed to track the very



weak GPS sidelobe signals [1]. This new receiver, called the Navigator, will drastically
reduce GPS signal outages, providing more accurate positioning. The Navigator is able
to track weak signals that are not usable by a standard GPS receiver, as seen in Figure
1.3. The lower dashed line represents the sensitivity threshold of the Navigator, while the

upper dashed line represents a standard space receiver.
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Figure 1.3: Simulated Received Power at GEO Orbital Altitude [1]

The Navigator is designed to provide autonomous navigation for spacecraft and
includes the GPS Enhanced Onboard Navigation Systems (GEONS) software. GEONS
is a powerful extended Kalman filter that uses an internal orbital dynamics model in
conjunction with incoming measurements to generate a position solution, even when less
than four GPS satellites are visible [1]. The GEONS orbital dynamics model is
extremely sophisticated and can emulate a complex Earth gravity field and the forces due

to solar and lunar gravity, atmospheric drag, and solar-radiation pressure. The Navigator



receiver feeds measurements to the GEONS, which is able to calculate precise GEO

orbits to within 10 meters 3D root mean square as seen in Table 1.1.

Table 1.1: GEONS State Estimation Error Statistics [1]

Radial Intrack Crosstrack 3D rm.s.
Geostationary Orhit
Position {m) -4.424 + 5.640 -0.546 + 2.265 0.675 + 2.462 7.959
Velocity {cm/s) -0.038 + 0.076 -0.133 + 0.051 -0.001 + 0.025 (.096
Low Earth Orhit
Position {m) 0.036 + 0747 0.215+ 0.995 0.103 + 0.860 1.532
Velocity {cm/s) -0.022 + 1.613 0.002 + 0.079 0.0243 + 0.107 0.210

The research conducted in this thesis is similar to the concept of the Navigator,
which supplements pseudorange measurements with additional data to produce a more
accurate navigation solution. Instead of a high-fidelity orbital mechanics model, this
research uses TWTT to improve the GPS accuracy at high altitudes. The Navigator
requires specialized hardware and the GEONS software, while TWTT measurements
could be used with a very simple GPS receiver and low-quality onboard clock.

The Navigator simulation uses slightly different values for the noise density and
the gain patterns of the associated antennas, so a direct “apples-to-apples” comparison is
not possible for this thesis research. However, the close similarity offers a good

benchmark for validating the simulation used in this thesis.

1.2.3  New GPS Satellite Architecture for High-Altitude Spacecraft

The Aerospace Corporation conducted a study in 1998 to examine the effects of
various GPS satellite architectures and user processing options on the accuracy of high
altitude orbit determination using GPS [20]. The study was divided into two main

investigations to examine the tradeoff between GPS system modifications and user



equipment complexity. It includes several hypothetical GPS satellite antenna
configurations and receiver clock choices.

Five antenna architectures were used in Monte Carlo simulations: the Block II-A
main beam (42°), the Block II-R main beam (38°), the Block II-R UHF crosslink antenna
(120%), and a hemispherical back-side antenna combined with either the II-A or II-R main
beam. The three receiver clock choices were a standard crystal, an improved crystal, and

a standard atomic clock.

Figure 1.4: Block II-R UHF Crosslink Antenna [20]

The simulations did show that GPS modifications would improve positioning
accuracy at GEO by increasing signal availability, but would require a significant
increase in cost and complexity. Therefore, a complete redesign of the GPS satellites to

assist GEO navigation is highly improbable.



Figure 1.5: Block II-R with Hemispherical Back-side Antenna [20]

The most important result from this study concerns the choice of receiver clock.
By using a clock with greater accuracy, the positioning error decreases significantly as
seen in Table 1.2. Such a concept is the crux of this thesis research, purporting that
introducing a more accurate clock via TWTT can significantly improve GEO positioning

using GPS.

Table 1.2: RMS Position Errors — GPS Broadcast Antenna Configuration vs User Clock Quality [20]

II-R Main (38°) | II-A Main (42°) | UHF Crosslink | II-R Main (38°) | II-A Main (42°)
Only Only (120%) + Backside + Backside

3D 16.9 m 3D 153 m 3D 3.6m 3D 45m [ 3D 45m
Standard R 6.3 m R 6.0 m R 2.4 m R 2.7m R 2.7 m
Crystal | 1 js4m | 1 1B39m | 1 25m | 1 34m | 1 35m
C 33m C 2.1m C 1.0 m C 1.0 m C 1.0 m

3D 11.8 m 3D 11.0m 3D 35m 3D 44m | 3D 44 m

Improved | R 4.6 m R 4.4 m R 23m R 2.7m R 2.6m
Coystal 41 q07m | 1 98m | I 25m [ I 34m | I 35m
C 2.0 m C 2.1m C 1.0 m C 1.0 m C 0.9 m

3D 8.4 m 3D 8.1m 3D 2.8m 3D 3.4m 3D 3.4 m

Atomic R 24m R 23m R 1.4m R 1.7m R 1.7m
Clock 1 78m | 1 7.6m I 2.1m I 28m | I 2.8m
C 1.7 m C 1.6 m C 1.0 m C 0.9 m C 0.9 m

R =radial, I = in-track, C = cross-track



1.2.4 Two-Way Time Transfer Measurements used in Relative GPS Positioning

A previous AFIT masters degree student researched the effects of TWTT on
networked differential GPS positioning [8]. Differential GPS techniques provide relative
positioning between a mobile GPS receiver and a fixed receiver with well-known
position information, as shown in Figure 1.6. The fixed receiver compares its GPS-
calculated position with its known geographic position and determines the corrections
necessary for eliminating the difference between the two. These corrections can then be
sent to a mobile receiver, providing the same amount of positioning accuracy as the
known location. In a networked system, multiple receivers exist in various locations,
such as a swarm of Unmanned Aerial Vehicles (UAVs), and are linked to the same fixed
reference station. Differential GPS accuracy is on the order of centimeters to meters,

depending upon the method used [21].

RTCM Correcticns Y,
Refarence Station at
& Known Location

Figure 1.6: Real-Time Differential GPS Diagram [10]
This previous research, found in [8], used a MATLAB® simulation to explore the
effects of introducing TWTT measurements to a network of six mobile receivers. The

TWTT measurement accuracy standard deviation varied between 3, 0.3, 0.03, and 0.003

meters. Smaller TWTT measurement error results in greater position measurement
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accuracy as seen in Table 1.3, which was created using the data produced in [8]. Clearly,

there is a significant benefit to using TWTT measurements with GPS positioning.

Table 1.3: Position Accuracy Improvement When Using TWTT

scenaro | 30Tgsilon S | Percent v
e 7
piTWTT(o.sm) 0.935 41:080/3
p+TWTT(0.03m) 0.890 43.92%
p+TWTT(0.003m) 0.889 43.98%

p = pseudorange measurement
TWTT(x) = TWTT measurement where x = accuracy level

The methodology found in [8] is similar to the research conducted for this thesis.
The main difference is that this research examines TWTT measurements used with GPS
positioning of geostationary satellites, versus a network of receivers on Earth. Both
simulations use similar assumptions, such as ignoring relativistic effects and other types
of error that can be modeled, calculated, and removed from physical measurements. The
glaring similarity is the idea that TWTT can drastically improve GPS positioning

accuracy.

1.3 Problem Statement

The main objective of this research is to examine the impact of adding TWTT
measurements to geostationary satellite positioning using GPS measurements. By
constraining relative clock errors, TWTT measurements can improve the positioning
accuracy.

By using TWTT measurements, a GPS receiver in geostationary orbit could
possibly calculate a good navigation solution without needing a high-sensitivity receiver.

If the satellite did have a high-sensitivity receiver, the navigation solution would be even
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better. TWTT measurements would eliminate the need for a precise clock on the satellite
because it would only need a precise reference clock on the ground. Essentially, using
TWTT with a highly accurate clock on the ground and a low quality clock on the satellite
would be comparable to putting a highly accurate clock on the satellite itself. A highly
accurate clock enables the system to meaningfully use individual pseudorange
measurements, because the clock error can be accurately modeled over time.

This research involves five trade studies that quantify the benefits of using TWTT
measurements with GPS. The first trade study involves using ephemeris data from
several days to ensure that the results are not dependent upon the day that is used. The
second trade study examines the differences between a simple GPS receiver model and a
complex GPS receiver model to determine the effect of simulation model accuracy. The
simple GPS receiver model uses a simple cut-off angle between the satellites and the
Earth and a constant pseudorange measurement noise value. The complex GPS receiver
model uses gain patterns for the GPS and geostationary satellite antennas and a varying
pseudorange measurement noise that depends on received signal strength. The third trade
study examines the differences between a rudimentary gain pattern and a more accurate
gain pattern for the GPS satellite antenna to determine the effect of gain pattern accuracy
levels. The fourth trade study investigates the effects of using different types of clocks
for the geostationary satellite clock and the TWTT reference clock to determine the effect
of using a high-accuracy clock versus a low-accuracy clock. The fifth trade study

evaluates the results as a function of TWTT measurement accuracy.
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1.4 Methodology

A simulation using MATLAB®™ examines the potential benefits of using TWTT
measurements in addition to GPS measurements for determining the position of a
geostationary satellite in orbit. The simulation is comprised of five main functions,
shown in Figure 1.7, which involve loading parameters, generating truth data, generating

measurement data, executing a Kalman filter, and analyzing the results.

[ load_params ]
[generate_truth] ----{generate_meas]-----{ kalman ]

I

[analyze_results}

Figure 1.7: Simulation Block Diagram

The load_params function allows the user to input the desired parameters into the
simulation. These parameters are used by the generate truth, generate meas, and
kalman functions. The generate truth function generates the ‘true’ values for the
positions of each GPS satellite and the position of the geostationary satellite. The
generate_meas function uses the ‘true’ data to calculate pseudorange measurements and
the TWTT measurements, simulating what an actual GPS receiver would collect. The
kalman function uses the generated measurements in a Kalman filter to estimate the
position of the geostationary satellite. The analyze results function compares the ‘true’

data with the Kalman filter results to determine how accurately the filter was able to

13



position the geostationary satellite using the measurements provide by generate meas. A

more detailed description of each function is located in Chapter Three.

1.5 Thesis Overview

Chapter Two describes the fundamental topics that are related to this research.
This chapter includes backgrounds of GPS, orbital reference frames, Two-Way Time
Transfer, and the Kalman filter. The topic of GPS includes an overview of pseudorange
measurements and associated equations, while the topic of TWTT includes an overview
of static and dynamic methods and associated equations. The topic of orbital reference
frames describes the Earth-Centered Earth-Fixed (ECEF) and Earth-Centered Inertial
(ECI) coordinate systems.

Chapter Three describes a simulation of positioning a geostationary satellite in
orbit using simulated GPS measurements with and without TWTT measurements. Using
the simulation, five trade studies were conducted to examine the impact on system
performance. The trade studies include comparing the results obtained from using
ephemeris data from different days, the differences between a simple and complex GPS
receiver model, the differences between simple and complex gain pattern data, the
differences between using high- and low-accuracy clocks for the geostationary and
TWTT reference clocks, and the differences in adjusting the TWTT measurement noise
error.

Chapter Four discusses the results of each trade study and provides an analysis of
each trade study. Chapter Five explains conclusions and recommendations for further

research.
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2 Background

2.1 Introduction

This chapter describes the fundamental topics that became the building blocks of
this research. There is a brief overview of GPS along with an explanation of system
architecture and pseudorange measurements. This chapter describes the applicable
reference frame coordinate systems, explains the theory and mechanics of Two-Way

Time Transfer, and demonstrates the method of using a Kalman filter.

2.2 GPS Overview

The following sections will describe the GPS architecture, including the
Operational Control Segment (OCS), the space segment, and the user segment as shown
in Figure 2.1. The next section will describe how the system produces navigation
information via pseudorange measurements. This section closely follows the descriptions

given in [8] and [25].

2.2.1 Operational Control Segment (OCS)

The OCS is comprised of the Master Control Station (MCS), monitor stations,
and ground antennas. The MCS provides the command and control for the entire GPS
system and tracks GPS satellite orbits, monitors and sustains GPS satellite health, and
maintains GPS time [16]. Operated by the MCS, the monitor stations are spread across
the Earth and constantly observe GPS satellite signals. Monitor stations have a GPS

receiver, an atomic clock, meteorological equipment, and communications hardware for
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transmitting measurement data back to the MCS [16]. The ground antennas reside with a
monitor station and communicate with the GPS satellites. Operated by the MCS, the
ground antennas are responsible for transmitting commands and other messages to the

satellites and for receiving telemetry and system health from the satellites [16].

THE MAJOR SEGMENTS OF THE GPS SYSTEM

RF SIGNAL LEVELS
PLANNED CONSTELLATION: (MINIMUM VALUES RECEIVED)
GPLANED |PAN SIGNALS (FOR C/HO. « 70 08)
3 SATELLUITES EACH PLANE/ SPACE SEGMENT -
557 INCLINATION ey -mm i
La -160 -163
La 166 ©0R -166
UPLINK DATA
+ SATELLITE EPHEMERIS
(POSITION) CONSTANTS TRANSMISSION BANDS
+ CLOCK-CORRECTION
DOWNLINK DATA 5 R FACTORS DATA LINK mﬁ".&,“ﬂ
- CODED RANGING SIGNALS ! NN ATMOSPHERIC DATA
+ POSITION INFORMATION R ALMANAC L, EowNLING 1575.42
+ ATMOSPHERIC DATA \ SRy J Lg (DOWNUNK) 12276
-+ ALMANAC L N\ Q S840 DoWHLINK 22215
' 1783.74

SBAND (UPLINK)
\ MONITOR
MTSTATIONS

USER SEGMENT A
; =

&
~CONTROL SEGMENT

Figure 2.1: Major Segments of the GPS System [15]

2.2.2 Space Segment

The nominal GPS constellation consists of 24 satellites placed into six orbital

planes at an altitude of 20,200 kilometers. Each orbital plane has an inclination of 55
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degrees and holds four satellites. The orbital planes are labeled A through F, as seen in

Figure 2.2.

Figure 2.2: The GPS Satellite Constellation [12]

The responsibilities of the OCS include creating an ephemeris for each satellite,
which is a compiled set of state vectors for each satellite predicted over time [23].
Ephemeris values describe the shape of the satellite’s orbit, and can be used to calculate
the satellite’s position and velocity. A Kalman filter calculates ephemeris values by
propagating the GPS satellites’ positions and velocities forward in time. The final result
is called the broadcast ephemeris. All satellites in the GPS constellation transmit the
broadcast ephemeris data for each satellite, allowing a user to know the position of each
GPS satellite.

A precise ephemeris data set is compiled roughly two weeks after the actual orbit
by a private conglomeration of users. Technically it is not a true ephemeris, but rather a
historical collection of observables. It includes measurement data from hundreds of

ground stations and accounts for ionospheric, tropospheric, and many other errors. The
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broadcast ephemeris is a prediction, while the precise ephemeris is compiled using past
measurements. The precise ephemeris is extremely accurate, though post-dated, and is
considered to be the true position of the GPS satellite. Precise ephemeris data used in
this simulation comes from the International GPS Service (IGS).

Each GPS satellite broadcasts a global navigational message on two L-band
frequencies, L1 (1575.42 Hz) and L2 (1227.60 Hz) [18]. The navigational message is
unique to each satellite, modulated on a pseudo-random noise (PRN) signal. It provides
satellite positions and satellite clock corrections for use in computing the user’s

navigation solution, to include position, velocity, and time.

2.2.3 User Segment
The GPS signal is globally available for use by any receiver. A typical GPS
receiver must have seven components in order to correctly acquire and track the GPS
signal [18]. It must have:
e an omnidirectional antenna to receive the encoded signals transmitted by
the GPS satellites
e a filter to remove interfering signals
e an amplifier to boost the GPS signal
e a delay lock loop receiver and demodulator to provide estimates of the
pseudorange, carrier phase, and navigational data for each satellite
e anavigation data processor to calculate the position of each satellite based
on the navigation data.

e an algorithm to estimate the user position and velocity state vector
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e a reference oscillator to provide a time and frequency reference for the

receiver.

2.2.4 Pseudorange Measurements

Two pseudorandom noise (PRN) codes, the Coarse-Acquisition (C/A) code and
the Precision (P(Y)) code, are modulated onto the L1 and L.1/L2 bands respectively [23].
Each PRN code is unique for a given satellite. To make a GPS measurement, the PRN
signal transmit time between the GPS satellite and the user must be determined. To do
this, the user’s receiver compares an internal copy of the PRN code with the PRN signal
received from the satellite. By calculating the time shift required to align the two PRN
codes and multiplying by the speed of light, the user can determine the pseudorange
between the receiver and the GPS satellite.

Because the true range from the receiver to the satellite is corrupted by receiver
clock errors, it is called a pseudorange. A pseudorange measurement (p) can be

expressed as:

P = —x, Y+ (P =y (2 =2, ) B, — St 0, (21)

where
x*,y*, z*" = true ECEF position of the satellite (meters)
X.oe> Vyees Zree = true ECEF position of the receiver (meters)
ot .= receiver clock bias (seconds)
ot = satellite clock bias (seconds)
U, = pseudorange error (meters)
c=speed of light (2.99792458 x 10® meters/second)
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Figure 2.3 displays the concept of a pseudorange measurement. At least four

satellites are needed to simultaneously estimate the receiver’s position and clock error (x,

Y, Z, Otree). In Figure 2.3, the b term is equal to —cdt,,. +cSt™ —v,, , as described above.

{p(""}: Pseudoranges (measurements)
{(xtF), yAK) KNy Satellite positions (known)

"J (X, .V!_z)

P = J(x0-x + (yO-p)f + (20-2% - b
s e

If K= 4, solve for user position (x, y, 2),
and receiver clock bias b

Figure 2.3: Illustration of Pseudorange Measurement [16]

2.3 Reference Coordinate Systems

All motion in the universe is relative, so there are many different ways to express
the reference frame that describes an object’s orbital motion around the Earth. Each
reference frame has advantages for particular circumstances, so this research utilizes two
reference frames: Earth-Centered Inertial (ECI) and Earth-Centered Earth-Fixed (ECEF).
Both the ECI and ECEF reference frames are Cartesian (orthogonal) coordinate systems.

This section closely follows the descriptions given in [25].
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2.3.1 ECI Reference Frame

The Earth-Centered Inertial coordinate system is typically used when describing
the motion of an object orbiting the Earth, as it is an inertial frame and is not concerned

with the rotation of the Earth. For ECI, the origin is located at the center of the Earth
with the X axis pointing toward the vernal equinox, also called the First Point of Aries, in
the equatorial plane. The Z axis points through the North Pole along the Earth’s axis of
rotation, and the Y axis points ninety degrees from the X axis in the equatorial plane,
following the right-hand rule. The X , Y ,2 axes are often referred to as / ,j ,1% , as seen in

Figure 2.4. Since the X axis direction is fixed in space, the ECI coordinate system does

not change as the Earth spins about its axis and revolves around the sun.

Figure 2.4: The ECI Coordinate System [23]
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2.3.2 ECEF Reference Frame

The Earth-Centered Earth-Fixed coordinate system is typically used for Earth-
based satellite tracking operations where the satellite’s coordinates need to be expressed
in relation to a geographic location on the surface of the Earth. Unlike the ECI reference
frame, the ECEF reference frame is always aligned with a particular longitude, normally
the Prime Meridian at Greenwich, and thus rotates with the Earth. The origin is still
located at the center of the Earth, and the Z axis still points through the North Pole along

the axis of rotation, while the X axis points toward a designated longitude and rotates

with the Earth. TheY axis always points ninety degrees from the X axis. Figure 2.5

portrays the ECEF coordinate system.

“~

Figure 2.5: The ECEF Coordinate System

The ECEF coordinate system proves useful when examining geostationary orbits,

since a geostationary orbit rotates at the same rate as the Earth. If a satellite were situated

in a perfectly geostationary orbit, the satellite’s X,Y,Z coordinates would remain
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constant. Because this research examines the errors in the navigation solution of a
geostationary satellite, the results will be presented in the ECEF coordinate system,

making them more intuitive to interpret.

2.4 Two-Way Time Transfer Overview

Two-Way Time Transfer (TWTT) is a technique in which signals are
simultaneously exchanged between two users to measure their relative clock offsets. If
the paths between the two users are reciprocal, the delays cancel and the difference
between the two clocks is half the difference in time interval counter readings [13].
Figure 2.6 explains the TWTT technique in more detail using a simplified setup with two

clocks connected via two cables.

Clock A Clock B

Time Interval Time Interval
Counter Counter
| Difference}
R(A) =A-B+dpy R(B)=B-A+dg

2 2
if Paths Reciprocal i.e. dpg = dga Then Clock Difference A- B =

R(A)-R(B) (A-B}-M

R(A) - R(B)
2

Figure 2.6: Two-Way Time Transfer Technique [13]

In Figure 2.6,
A = Time Interval Counter measurement from Clock A
B = Time Interval Counter measurement from Clock B
dap = delay caused in cable from Clock A to Clock B
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dsa = delay caused in cable from Clock B to Clock A
R(A) = difference between Clock A and Clock B with cable delay dga
R(B) = difference between Clock B and Clock A with cable delay dap
There are two types of TWTT, those being static and dynamic. Static TWTT uses
two or more transceivers whose positions are held constant during the transmission and
reception of the measurement signals. Dynamic TWTT is a more recent development

that allows one or more of the transceivers to be moving [2]. This section closely follows

the descriptions given in [8] and [25].

2.4.1 Static TWTT

TWTT commonly involves two static clocks on the Earth’s surface that use a
geostationary satellite to relay signals between them. The connection between the two
clocks proceeds through an antenna, a transmitter, an uplink to the satellite, a route
through the satellite, a downlink from the satellite, an antenna, and a receiver [13]. This

arrangement is depicted in Figure 2.7.

dsas

~
dsaa
das Osp
Anten
dsa das Di)lexerna.and
Fillers

dra dg
Transmitiet C':‘*_I I Ko Transmitter
i Recei I I I I Receiver

dpa dre

Earth Station Earth glltlorl
A

Figure 2.7: Static Two-Way Time Transfer Using a Satellite [13]
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In Figure 2.7,

das = delay between Receiver A and satellite during time of transmission

dsa = delay between satellite and Receiver A during time of transmission

dgs = delay between Receiver B and satellite during time of transmission

dsg = delay between satellite and Receiver B during time of transmission

dra = delay in Transmitter A

drp = delay in Transmitter B

dra = delay in Receiver A

drpg = delay in Receiver B

dsap = delay in satellite when signal is going from Transmitter A to
Receiver B

dsga = delay in satellite when signal is going from Transmitter B to
Receiver A

TIC = Time Interval Counter

The Time Interval Counters (TICs) make basic time interval measurements at
each site. Each TIC starts with a pulse from the local clock and ends when the signal is
received from the remote clock. The remote clock sends a pulse at the same time that the
local clock sends a pulse. Nominally, one pulse per second is the rate used for TWTT.
Each station records the time interval and the information is sent to the other station
where the two values are differenced. The data rate required for exchanging pulses is
trivial, allowing TWTT to occur in real time [13].

The time interval information that is differenced at each station includes all
delays shown in Figure 2.7. An additional delay term, the Sagnac delay, is also included.
The Sagnac delay is associated with the Earth’s rotation and the fact that transmitted
signals have a finite velocity, as demonstrated in Figure 2.8. The Earth stations and
satellite are at position 1 when the pulses are sent to the satellite. The rotation of the

Earth causes the stations to move to position 3 before the signals are received. The

Earth’s rotation and the finite velocity of the signals have combined to make the transmit
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signal path longer from Station B to Station A, and shorter from Station A to Station B.
For static TWTT, the Sagnac error is effectively a deterministic propagation delay.

Satellite Motion

garth’s Hotauon
®

Earth Etation Earth Station
B

Figure 2.8: Demonstration of the Sagnac Delay: Earth’s Rotation Produces Non-Reciprocity [13]

By adding all delays to the difference, the complete time interval measurement

for each station can be stated in the following equations:
R(A) =A —B +drp + dgs + dsga + dsa + dra + Sas (2.2)
R(B) =B — A +dra +das +dsap +dsg + drp + Spa (2.3)

where
R(A) = time interval counter reading for Station A
R(B) = time interval counter reading for Station B
Sas = Sagnac delay from Station A to Station B
Sga = Sagnac delay from Station B to Station A
A = time of Clock A
B = time of Clock B
All other variables are the same as Figure 2.7
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Differencing Equations 2.2 and 2.3, as seen in Figure 2.9, produces the expanded

Two-Way Time Transfer equation.

_ R(A) - R(B) Time Interval
A-B= 3 Counter Readings
drg-dpp dra-dpa Earth Station
2 ¥ ) Equipment
das-dsa dgs-dgg
- Pro| tion
> 5 paga
d -d
+ LB?SL“— Delay in Satellite
2wAr , s
——6—2— Earth's Rotation

Figure 2.9: The Two-Way Time Transfer Equation [13]

In Figure 2.9,
C = speed of light
Ar = area enclosing the projection of the satellite onto the Earth’s
equatorial plane
o = Earth rotation rate
In the case of static TWTT, the uplink and downlink propagation delays are
essentially equal, thus dsa = das and dsg = dgs. The difference in Sagnac delays (Sap —
Sga) is constant for the static case of TWTT, and the transmitting and receiving delay for
the Earth station equipment is equal, as is the satellite delay when routing a signal from

Station A to Station B or Station B to Station A. These factors cause cancellation when

the measurements are differenced, and the TWTT equation is reduced to:

A—-B= [R(A) — R(B) + SAB — SBA] (24)

1
2

where
R(A) = time interval counter reading for Station A
R(B) = time interval counter reading for Station B
Sas = Sagnac delay from Station A to Station B
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Spa = Sagnac delay from Station B to Station A
A = time of Clock A
B = time of Clock B
Great precision and accuracy can be achieved by using a geostationary satellite
for comparing and synchronizing clocks in this manner. This accuracy is a result of
many simplifications that occur in the process of calculating a time difference
measurement using TWTT. Propagation delays that occur during uplink and downlink to
and from the satellite are essentially equivocal, causing them to cancel. Sagnac effects

can be accurately calculated without the need for precise information on clock locations

and errors, further reducing complexity.

2.4.2 Dynamic TWTT

Dynamic TWTT is accomplished in the same fashion as static TWTT with the
exception that one or more of the receivers is moving. The moving receiver(s) introduce
motion-related errors that were not present in the static case, changing the TWTT time

differencing equation. A dynamic TWTT configuration is illustrated in Figure 2.10.

‘2; Geostationary Satellite S
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Two-Way Two-Way
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Earth Station A
S Mobile Platform B

Figure 2.10: Dynamic Two-Way Time Transfer Using a Satellite [3]
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Not all of the cancellations that applied to the static TWTT case transfer to the
dynamic case. For the dynamic TWTT scenario in Figure 2.10, it can be assumed that
das = dsa, since the geostationary satellite has no relative motion with respect to the earth
station and the path length does not change. This replicates the situation in the static
case. Unlike the static case, dsg # dgs for the dynamic case, since the mobile platform
has moved during the transmission of signals, causing the transmit and receive path
lengths to be different between the geostationary satellite and mobile platform. Because
the mobile platform is in motion, the Sagnac effect will also vary and produces a time-
dependent value.

Taking all this into account, the time differenced measurement for dynamic

TWTT becomes:

A —B = —[R(A) - R(B) — APropagation Delay + Sag — Spa] (2.5)

1
2
where

R(A) = time interval counter reading for Station A

R(B) = time interval counter reading for Station B

Sas = Sagnac delay from Station A to Station B

Sga = Sagnac delay from Station B to Station A

A = time of Clock A

B = time of Clock B

APropagation Delay = change in propagation delay over measurement

interval

The APropagation Delay term is a time-varying value that changes based on the
relative motion of the mobile platform as well as how the velocity vector is projected

onto the line of sight vector from the geostationary satellite. The Sagnac delay term (Sap
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— Sga) is also time-varying, changing based on the absolute position of the two receivers

and the velocity vector projected onto the equatorial plane [3].

2.5 Kalman Filter

A Kalman filter is a sequential filter that continuously improves the estimate of a
state vector by sequentially incorporating new data measurements into the estimate as
they become available [24]. A state vector can include data regarding position, velocity,
acceleration, and any other pertinent information. A Kalman filter predicts the state in a
future time epoch and then, upon reaching that new epoch, it uses collected
measurements to correct the estimated state before predicting again to a new epoch.
Kalman filters are able to compensate for ill-known or incompletely modeled dynamical
systems [23] and are ideal for handling stochastic systems, such as navigation. This
section uses the equations and descriptions provided in [22] for presenting a Kalman
filter summary.

The Kalman filter is an iteration of time propagation and measurement

incorporation [22]. It begins with an initial estimated state vector X(#,) and an initial
estimated covariance P(f)). The covariance matrix is a statistical measure of the
accuracy of the state vector X(7,). In the next step the state X(#,) and covariance P(z,)

are predicted for the next epoch. These predictions are merely calculated and are not

computed using measurement data. The Kalman filter uses Equations 2.6 and 2.7 to

propagate the state and the covariance forward in time from ¢, , to ¢z,. Using this

notation, ¢, and ¢, , refer to the times when measurements are incorporated and a
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superscript plus sign (+) indicates the specified time is after measurement incorporation,
while a superscript minus sign (-) indicates the specified time is before measurement

incorporation.

ﬁ(tk_) =1, - tk—l)ﬁ(l‘;—l) (2.6)

P(t;) = (I)(tk —liy )P(t;—l)q)T (tk —liy ) + Qd (2-7)

where
X(¢,_,) = current state vector (before propagation)

X(#, ) = state vector propagated to next epoch
P(¢; ) = current covariance matrix (before propagation)
P(¢,) = covariance matrix propagated to next epoch

®(t, —¢t, ,) = state transition matrix, which propagates the state and

covariance forward in time
Q_, = second moment of the process noise, which is the discrete time

equivalent covariance associated with process noise that occurs
when covariance P is propagated through time [23]

Once the state vector and covariance matrix are propagated forward in time to the
next epoch, real measurements are incorporated to correct any error that may have been
introduced during propagation. The measurements must first be weighted properly
before they can be incorporated into the estimated state and covariance. If the
measurements are very poor, the filter must know to rely less on the collected data and
depend more upon its own estimation of the state. Alternatively, if the measurements are
very good, the filter must know to rely more heavily upon the collected data and depend

less upon its own estimation of the state. This weighting factor is calculated using the

Kalman gain, as seen in Equation 2.8.
K =P(, )H' [HP(z,)H" +R]" (2.8)

where
K = Kalman gain matrix
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P(z,) = covariance matrix propagated to next epoch (but before
measurement incorporation)

H = observational partial derivative matrix, which relates the linearized
observations (z) to the estimated states (x)
R = measurement noise covariance matrix
Once the Kalman gain has been calculated, the state and covariance are updated

by incorporating the measurement data. This process is illustrated in Equations 2.9 and

2.10.

R(1)) = &()) + K[z~ HX(5))] 2.9)

P(¢)=P(t,)-KHP(z,) (2.10)

where
Z = measurement vector

z—HX(#,) = r = residual vector, which indicates how much error exists
between the estimated state and the measurements (want residuals

to be small, as it indicates the estimate is accurate)
At this point, the cycle repeats as the Kalman filter again propagates the state and
covariance to the next epoch, incorporates collected measurements, and updates the state
and covariance using the measurements. The Kalman filter loop is displayed in Figure

2.11 (using slightly different notation).

32



i p A
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Compute Kalman gain:
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Pro1=0,P, 0p +Q X, =X+ K, (2, - Hoxp)
|—>‘§ X
Compute error covariance Ll L
for updated estimate:
P, = (1-K, H,)P;,

Figure 2.11: Kalman Filter Loop [7]

2.6 Summary

This chapter presented the relevant background information necessary for this
research. Several key issues were explained, including the GPS system and pseudorange
measurements, Earth-based reference coordinate systems, both static and dynamic Two-
Way Time Transfer techniques, and the Kalman filter. Chapter 3 will describe the
methodology of this research and how it used the background concepts explained in

Chapter 2.
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3  Methodology

3.1 Introduction

This chapter describes the methodologies and assumptions that were used to
accomplish the research objectives described in Chapter 1. This research is based on a
simulation created using MATLAB® and contains five main functions.

The first main function involves collecting desired input parameters from the
user. The second function uses the input parameters to create truth data that will simulate
the environment that is being measured. The third function uses the truth data to generate
pseudorange and TWTT measurements for a geostationary satellite. The fourth function
inputs the generated measurements into a Kalman filter and predicts the state of the
satellite at each epoch in the simulation. The fifth and final function takes the results of
the Kalman filter and compares them to the truth data to determine the accuracy of the

filter.

3.2 Parameters

The simulation begins by collecting all the desired input values for a host of
variables that will be used throughout the simulation. The list of input variables is
described in the following sections. All the values in the parameters function are

declared globally for use in all functions throughout the simulation.
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3.2.1 [Initial ECI State for Geostationary Satellite

The initial ECI state consists of X, Y, Z position and velocity values that describe
the location of the satellite at the start of the simulation. This vector is nominally
configured to place the satellite over the Prime Meridian (0 degrees longitude) at an
altitude of 35,785.863 kilometers with an orbital velocity of 3.07466 km/s. The result is

a circular geostationary orbit.

3.2.2 Simulation Run Time and Time Step Interval

The simulation run time is set for a single day. The time step interval denotes
how often measurement data is collected by the satellite as it orbits and is set for 60
seconds. If a higher measurement resolution is desired, the time step can be shortened at

the expense of a longer computation time.

3.2.3 Ephemeris Date Selection

As discussed in Chapter 2, the ephemeris describes the location of a satellite
within its orbit. The ephemeris data for the GPS constellation may be chosen from any of
ten possible days that were randomly selected from each year between 1997 and 2006.
For simplicity in the model, each chosen day is a Sunday. GPS time is recorded in week
seconds and resets at midnight every Sunday. By starting the simulation at midnight on
Sunday, which is zero GPS week seconds, many complications can be avoided in the
simulation code. These issues arise when attempting to keep track of the GPS week
second time interval and initialize the time vector accordingly, making it much easier to

always start at a time value of zero.
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3.2.4 GPS Measurement Model Selection

Two models are available for generating GPS pseudorange measurements—a
simple model and an advanced model. The simple model uses a constant cut-off angle
between the GPS satellite and the Earth. As long as the Earth is not blocking the
transmitted signal from the GPS satellite, it is received by the GEO satellite. The
advanced model is more realistic, because it accounts for the antenna gain on the GPS
satellite and the GEO satellite and includes the signal path loss that occurs as the signal
travels through space. If the received power is below a specified threshold, the signal is
considered too weak and cannot be used for generating pseudorange measurements.

The advanced GPS measurement model has additional parameters that can be
adjusted. There are two gain patterns that can be used for the GPS satellite, simple and
advanced. The simple gain pattern contains fewer values, ranging between 0-30 degrees
off-boresight, and is based on data found in [19]. The advanced gain pattern has values
from 0-180 degrees off-boresight and more realistically portrays an actual GPS antenna
and is based on data found in [9]. The GEO satellite uses the gain pattern taken from the

commercial patch antenna listed in [19], replicating actual flight hardware.

3.2.5 Clock Type Selection

The simulation has a choice of three clock types to use as the GEO satellite clock
and as the TWTT reference clock. The possible clock oscillators include Rubidium,
Cesium, and ovenized crystal. The clock parameters are taken from [14]. The Rubidium
clock is the most precise and the ovenized crystal is the least precise. Ovenized crystal is
an inexpensive and prolific type of clock oscillator and is the typical clock of choice built

into current satellites.
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3.2.6 Clock Model Parameters

In order to accurately predict how the clocks will propagate forward in time,
certain parameters must be configured. The GEO satellite clock and TWTT reference
clock are assigned an initial accuracy in bias and drift that is fed into the truth state
propagator and the Kalman filter, allowing both propagators to model the clocks
accurately. These initial values are standard deviations of the bias and drift error and will
be multiplied by a random number and fed into the covariance matrix when starting the

clock simulation.

3.2.7 Two-Way Time Transfer Parameters

The TWTT measurements are modeled to have a white Gaussian measurement
noise error, expressed as a standard deviation. The TWTT measurement noise error is a
result of signal degradation during transmission and in the hardware, affecting
measurement accuracy, and will be held constant. The values used were 10, 3, 0.3, 0.03,

and 0.003 meters for this simulation.

3.2.8 Kalman Filter Parameters

The Kalman filter contains initialization values that are used in the covariance
matrix for predicting the level of measurement accuracy. The initial accuracy in the
position and velocity measurements are provided to the filter when it starts. There is also
a process noise value, expressed as a standard deviation, which is a degradation of the

measurement signal as it travels through the associated hardware, reducing accuracy.
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3.2.9 On/Off and Selection Flags

Numerous naturally-occurring errors are built into the simulation model that can
be turned on or off. The on/off flags enable or disable clock errors in the GEO satellite
and/or TWTT reference clock, measurement noise errors in the pseudorange and/or
TWTT measurements, hardware-related process noise errors, and initial state errors in the
Kalman filter.

The selection flags allow the user to choose different modeling options in the
simulation. The GPS measurement model includes a simple and advanced model, and
the TWTT measurement model includes two choices: using no TWTT measurements
and using TWTT measurements where the reference clock has a drift rate that does not

coincide with GPS time.

3.2.10 Monte Carlo Parameters

The simulation is equipped to handle Monte Carlo simulation, involving multiple
iterations of the simulation with different random numbers. Monte Carlo simulation is a
statistical analysis that strives to provide enough data, through repetition and random
inputs, to accurately represent the stochastic characteristics of the model. In this
simulation, Monte Carlo simulation is turned on or off with a flag, and the total number

of iterations is defined by the user.

3.2.11 Constants

This simulation uses many constant values throughout the various sub-functions.
These constants include the speed of light, the radius of the Earth, the radius of a GPS

orbit, the frequency of the GPS L1 signal, nominal transmit power of a GPS antenna, the
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gravitation parameter of the Earth, and the rotation rate of the Earth. To eliminate chance
for error, the sub-functions reference all constants from a single global location, as

opposed to being declared in each sub-function that requires the value.

3.3 Truth Model

The truth model function is responsible for generating all data that will be
considered as the absolute truth. There are three main sections in this function:
propagating the geostationary satellite state forward over a specified time interval,
calculating the positions and clock states for each GPS satellite during that time interval,

and modeling clock errors.

3.3.1 Propagate Geostationary Satellite State

Implementation of a simple Kalman filter propagates the GEO satellite state
vector into the future. The initial state vector X(¢,) is provided along with an initial
covariance matrix P(¢,) and a dynamics matrix F(¢,). As explained previously, the

covariance matrix describes the accuracy of the state vector values, and the dynamics
matrix explains the motion of the state vector.

The GEO satellite state vector contains six values, displayed in Equation 3.1,

where XY, Z are the position values and X,Y,Z are the velocity values.

3.1)
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The dynamics matrix describes the motion of the GEO satellite, which is a

circular orbit, and is in a continuous form. The dynamics matrix is constructed to satisfy

the relationship described in Equation 3.2.

x=Fx

(3.2)

The orbital acceleration for a two-body circular orbit is calculated by using

Equation 3.3. This expression is needed to find the time derivative of the orbital velocity,

which is needed to build the relationship indicated in Equation 3.2.

H

’/,3

a=——7X

a = orbital acceleration vector
1 = Earth gravitational constant
r
X

=V X?>+Y*+Z* =orbital radius

= orbital position vector

(3.3)

Using Equation 3.3, a list of relationships is formulated for use in creating the

dynamics matrix. The list of relationships is shown in

[X Y Z X Y Z}Tz[xl X, Xy X, X xé]T.

X =x,
Xy = X5
Xy = Xg
X, =5x
X :%xz
X, :r%x3

Equation 3.4, where

(3.4)

Using Equation 3.4, Equation 3.2 can be written in expanded form as:
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570 0 0 10 0y
i, 0 0 0 01 0],
P 0 0 0 00 1|,
=2 0 0 00 of. (3-5)
Xy r Xy
i, 0 —£ 0 0 0 0fx
%] [0 0 % 0 0 0 %]

For ease in a computer simulation, the continuous form equation must be
converted to a discrete-time equation [22]. This conversion takes the dynamics matrix F
and turns it into the state transition matrix ®, as shown in Equation 3.6.

® =" (3.6)

where
At =t,,, —t, = time interval

A similar conversion must take place for the covariance matrix Q to ensure it is
also in a discrete-time form. Shown below, the continuous Q matrix represents process

noise being added to the acceleration terms to account for unmodeled orbit perturbations.

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
Q = 2
0 0 0 o 0 0
0 0 0 c? 0
0 0 0 0 0 o7

(3.7)

Using Equation 3.8, the continuous Q becomes the discrete-time Qg. The Qg

matrix will be used when introducing process noise.

Q, = [ ®(1)Q® (r)d7 (3.8)
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The next step is to propagate the state to the next time interval by using Equation

3.9.
x(t,) =@, —t, )X, ) (3.9)

If process noise is to be included in the propagation, correlated randomized white
noise must be introduced to Equation 3.9. This is achieved by using the U-D
factorization algorithm (explained in [7]) on the Qg matrix, which will provide the

correlation factor. The decomposition of Qg into U and D is illustrated in Equation 3.10.

Q,=UDU" (3.10)
where
U = composed of elements along major diagonal of Qgq, the nontrivial
elements in upper triangular part of Qq, zeros elsewhere
D = composed of elements in major diagonal Qgq, zeros elsewhere
By multiplying the U-D factorization results with a 6 x 1 vector of random
numbers generated by MATLAB®, the result is a 6 x 1 vector wq of correlated

randomized white noise values that correspond with the positions and velocites in the

state vector X. This process is described in Equation 3.11.

w, =U/Dn (3.11)
where
wq = 6 x 1 vector of correlated white noise
n =6 x 1 vector of random numbers
If so desired, process noise can be included in the state propagation by using

Equation 3.12. Inclusion of process noise is selected by using a flag in the parameters

function. It was always selected, except for initial simulation debugging.

X(1) =@t —1,_)X(1) + W, (3.12)
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3.3.2 Calculate GPS Satellite Positions and Clock States

After propagating the GEO satellite state vector forward in time over the entire
simulation time interval, the truth model function then calculates the positions and clock
states of each individual GPS satellite over the entire simulation time interval. This
information is stored for use in the generated measurements function.

There are two sets of ephemeris data, broadcast and precise. As described in
Chapter 2, the broadcast ephemeris is a prediction of the orbital parameters for the GPS
satellites, while the precise ephemeris is a calculation of the orbital parameters using
collected measurement data. The broadcast ephemeris is used by a GPS receiver to
calculate a navigation solution, while the precise ephemeris contains two-week-old data
and can only be used for post-processing. In this simulation, the precise ephemeris is
used to calculate the true position and clock state of each GPS satellites, while the

broadcast ephemeris is used when generating simulated measurements.

3.3.3 Clock Model

GPS depends wupon highly accurate atomic clocks that can provide
synchronization between the satellites and receiver. Synchronization occurs through
estimating the time offset, drift, and drift rate of the receiver clock relative to GPS time.
To ensure the simulation accurately represents real clocks, the clock model must replicate
the performance of atomic clocks. This sub-section closely follows the descriptions
given in [8] and [25].

GPS satellites use Rubidium and Cesium atomic clocks to maintain accurate GPS

time. In addition to these clock types, ovenized crystal will also be modeled for use on
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the GEO satellite. Ovenized crystal is a very common clock found on satellites that do

not require the extremely precise time measurements used in navigation.

The performance of atomic clocks can be simulated using a three-state

polynomial process driven by white noise. The discrete process model and its covariance

can be written as [6]:

1 =
®(7)=|0 1 (3.13)
0 0
x(t,.) 1 ¢ 7| x@) | | w(k)
%) (=10 1 7 || x@) |+ wy(k) (3.14)
%5 (1) 00 I |[x@) w; (k)

q,7 +%Q2T3 +%Q375 %%Tz +%‘]374 %%T}
Q.(7)= E[W(k)w(k)T] = %%Tz +%‘]3T4 q,7 +%Q3T3 %%72 (3.15)
%%Tz %‘]372 q;T
where

x,(¢,) and x, (¢,,,) = clock bias error at times 7, and,

+1
x,(¢,)and x,(¢,,,) = clock drift error at times ¢, andz,
x,(t,) and x;(¢,,,) = clock drift rate error at times ¢, andz,,,
T =t,,, —t, = time interval

w(k), wa(k), and w;(k) = independent white noises

q1, 42, g3 = continuous process noise power spectral densities representing
the bias, drift, and drift rate

®(7) = state transition matrix propagating current clock bias, drift, and

drift rate errors forward in time from ¢, to ¢,

Q, (7) = discrete-time process noise covariance matrix

The clocks cannot be modeled deterministically because of their stochastic nature.
Instead, the performance of the random walk noise values (w;, w», ws) is modeled and the
characteristic Allan Variance curves of the atomic frequency standards are matched [7].

An example of a three-state random clock process is illustrated in Figure 3.1. A best fit
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curve drawn through the plot shows how the three-state atomic clock performance is
quadratic in nature. The statistics of the random walk noise values are determined by the

values of the variance elements (g, g2, ¢3) of Qq in Equation 3.15 [5].

% I|Il||||I|I|I}|I!I||I|II|III||I|II

clock error

clock noise
smoothed average

U IIII.IIII|IIII|IIIIIIII|IIII|?III|

1 2 3 4 5 6 / 8
tune

Figure 3.1: Comparison of Simulated Clock Error and Quadratic Fit [5]

The g values for this simulation were chosen by leveraging research conducted in
the Clock Improvement Initiative [14] and are displayed in Table 3.1. To calculate a
clock’s three-state random process in the simulation, initial clock bias, drift, and drift rate
values are selected from Table 3.1 and then propagated using Equation 3.14. The Qq
from Equation 3.15 was used to generate properly correlated w;, w,, and w; terms using

the UD factorization technique described in Equations 3.10 and 3.11.

Table 3.1: Process Noise Values for Atomic Clocks

Rubidium Clock | Cesium Clock | Ovenized Crystal Clock
qs (bias) 1.11x 1072 s%s | 4.44 x 107%* s%/s 1.6 x 102" §%s
Qo (drift)y | 2.22x107%s%s’ | 3.33 x 1072 5%’ 167° x 107 s%/s°
g3 (drift rate) | 6.66 x 10 §%s° 0 s%/s’ 0 s%/s’
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When using a three-state model, a value of zero for the ¢; term creates a
singularity. To prevent this, a value of 1 x 10"% s%s’ is used in the simulation instead of
zero. This value is sufficiently small enough to represent zero while also being large

enough to prevent a singularity from occurring.

3.4 Generated Measurements

The measurement generation function is responsible for creating pseudorange
measurements by using the information supplied by the truth generation function. The
pseudorange measurements can be calculated using a simple or an advanced GPS

measurement model.

3.4.1 Pseudorange Measurements

Pseudorange values are normalized range measurements with the addition of
errors due to pseudorange measurement noise, GPS satellite clock bias, and receiver

clock bias. The pseudorange equation is:

sat

P = —x, P+ (P =y (2 =2, ) + B, — Ot 40, (3.16)

rec

where
x*,y*, z*" = true ECEF position of the satellite (meters)
X.oo> Vyees Zree = true ECEF position of the receiver (meters)
ot .= receiver clock bias (seconds)

ot* = satellite clock bias (seconds)
L, = pseudorange error (meters)

c = speed of light (meters/second)
The simulation allows various errors to be turned on and off, so the pseudorange
is calculated in stages to produce more efficient code. Initially, the pseudorange

measurement is the exact distance between the GPS satellite and the GEO satellite, as is
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described by the square root value in Equation 3.16. If no errors were turned on, this
would be the final output of the pseudorange generation.

The next step is to determine which errors are turned on, and add each error value
incrementally. If all errors are turned on in the simulation, then the final output of the
pseudorange generation would match Equation 3.16. The receiver and GPS satellite
clock errors are generated in the truth model and would be incorporated into the
pseudorange measurement if their on/off flags were turned on in the parameters function.

The measurement generation function has two models for simulating the
pseudorange measurements. The simple model is very rudimentary and is

computationally less expensive, while the advanced model is much more realistic.

3.4.2 Simple GPS Measurement Model

The simple GPS measurement model uses distinct cut-off angles for determining
satellite visibility and does not include the side lobes of the GPS transmit antenna. The
minimum cut-off angle is where the Earth occludes the GPS signal, and the maximum
cut-off angle is where the GPS antenna no longer transmits. Figure 3.2 illustrates the
simple measurement model.

The ionosphere extends to about 400 kilometers above the Earth’s surface and
will bend the GPS signals, creating errors in the pseudorange measurement. For this
reason, the Earth’s surface cannot be used as the occlusion for the GPS signals, since any
signals that come close to the Earth’s surface will be distorted and erroneous.
Ionospheric errors can be corrected and removed, but this simulation does not use such

methods. For simplicity, the ionosphere boundary is considered opaque, and any signals
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that pass through it are ignored. In a sense, it is like extending the radius of the Earth by
400 kilometers.

The nominal beamwidth of a Block II/IIA GPS satellite antenna is approximately
42.6° [1], which equates to a 21.3° off-nadir look angle. This value becomes the

maximum look angle for the GPS satellite, as seen in Figure 3.2.

GEO SV ’ﬂ/\,j\
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N Reg:on \HMax Look
Angle
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/

Max lonosphere
Altitude

Visible 7
Region

Figure 3.2: Simple GPS Measurement Model Diagram (not to scale)

The simple GPS measurement model produces a pseudorange measurement for a
given GPS satellite only if the GEO satellite falls within the visible region seen in Figure
3.2. Signal power is not modeled and it is assumed that line-of-sight visibility guarantees
a pseudorange measurement. The standard deviation of the pseudorange measurement
noise error is constant, set at five meters. If the pseudorange measurement noise error is
not turned on in the simulation, the pseudorange value is the exact distance between the

GEO and GPS satellites.
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3.4.3 Advanced GPS Measurement Model

The advanced GPS measurement model is much more robust than the simple
model, taking into account the individual antenna gain patterns of each satellite to
determine the received signal strength. It then uses the received signal strength to
calculate the value of the pseudorange measurement noise error, which is taken from a
table of values. The minimum cut-off angle imposed by the upper ionosphere is still in

effect. The advanced GPS measurement model is illustrated in Figure 3.3

Min lonosphere
Altitude

Max lonosphere
Altitude

Figure 3.3: Advanced GPS Measurement Model Diagram (not to scale)

To determine the strength of the GPS signal that is received by the GEO satellite,
the satellite nadir look angles are needed. If the GEO satellite and GPS satellite positions
are known, simple vector math will produce the angles 6 and a (referenced in Figure 3.3),
which are the GPS satellite look angle and GEO satellite look angle, respectively. The
calculated look angles are then used with antenna gain pattern information to determine

the received signal strength. By knowing the look angle, it is a simple measure of tracing
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the plot to find the corresponding antenna gain. This is accomplished for both the GPS
satellite and the GEO satellite.

An antenna gain pattern plot can be created in a laboratory by making
measurements on an antenna and recording the signal strength at various horizontal look
angles. This simulation uses either a simple or advanced GPS antenna gain pattern plot,
both based on the Block II/IIA GPS satellites. For the GEO satellite antenna, the
simulation uses an antenna gain pattern plot taken from a commercial patch antenna that
is currently used on spacecraft.

The simple GPS satellite antenna gain pattern plot includes the primary signal
lobe and the secondary lobe, as seen in Figure 3.4, and drops off at approximately 43°

from nadir.

20
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Figure 3.4: Simple GPS Antenna Gain Pattern Plot [19]

The advanced GPS antenna gain pattern plot, shown in Figure 3.5, includes the
primary and secondary lobes, as well as additional information all the way out to 180°

from nadir. A gain pattern is not necessarily symmetrical, but, for simplicity in this
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simulation, it is assumed that the gain pattern does not change with varying vertical

angles. Similar GPS broadcast antenna gain pattern data is located in [4] and [11].
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Figure 3.5: Advanced GPS Antenna Gain Pattern Plot [9]
The GEO satellite uses the gain pattern from a patch antenna that flew aboard the

particular antenna is representative of hardware that has flown on previous satellites. The

Falcon Gold experiment, designed by students at the Air Force Academy [19]. This

antenna gain pattern plot is illustrated in Figure 3.6.
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Figure 3.6: Patch Antenna Gain Pattern Plot [19]

The received power can be calculated by using the transmit and receive antenna

gains, the transmit power, the distance between the transmit and receive antennas, and the

wavelength of the transmitted signal. The resulting equation is listed below in standard

and decibel format [16].
2
p_BGG 2 61
47R° 4rx
Pup=Fapt GT,dB + GR,dB —20log,y R—22+24,, (3.18)
where

P = received signal power (Watts)

Pr=signal power at transmit antenna

Gr = transmit antenna gain

Gr = receive antenna gain

R = distance between transmit and receive antennas

A = signal wavelength (GPS L1 wavelength ~ 5.255 meters)

The resulting value is the signal power at the exit of the receiver antenna. All

hardware has an associated noise value which must be subtracted from the received

power when the signal is processed. The final value is referred to as C/Nj (also written as

P,/Ny), which is the carrier to noise density, where Ny is the noise density. This
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simulation uses a standard Ny value of 202 decibel-Watts [16], which is subtracted from
Equation 3.18 to produce the final C/Ny value.

Once the received signal strength has been calculated, the pseudorange
measurement noise error can be established. The pseudorange measurement noise error
values are developed in a laboratory setting by testing the operating hardware, and vary
between GPS receivers. The data is compiled into a table of corresponding signal
strengths, as illustrated in Figure 3.7. This plot is expressed in received power and not
C/Ny. By subtracting Ny (-202 dBW) from the signal strength values listed, the C/N
values can be obtained. This plot is representative of an extremely high-sensitivity

receiver. Similar C/Ny data is located in [4].
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Figure 3.7: Pseudorange Measurement Noise Error Standard Deviation Plot [11]

The pseudorange measurement noise error value is given as a standard deviation,
which is in turn multiplied by a MATLAB® random number, providing the measurement

error that will be added to the pseudorange value. The pseudorange measurement noise
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error can be turned on or off in the simulation. If the error is turned off, the pseudorange
value will equal the exact distance between the GPS and GEO satellites, just as in the

simple GPS measurement model.

3.4.4 TWTT Measurements

The Two-Way Time Transfer measurements in this simulation do not include
Sagnac error or motion related errors, since they are largely deterministic and can be
removed. The simulation could add the errors and then remove them, but it is a wasted
step that will only increase computational cost and would have no added value. For
simplicity, this simulation assumes that the propagation delays will cancel as in the static
TWTT case. The resulting TWTT measurement equation is:

AT = L[TIC(GEO) —TIC(REF)|+ Upyry

=%[205IGEO —2c5tREF]+UTWTT (3.19)

= COlpo = COtpup + Upyry

where
ot.z, = GEO satellite clock error

Oty = reference clock error
Uy = TWTT measurement error
¢ = speed of light

If TWTT measurements are to be used in the simulation, they are given to the
Kalman filter along with the pseudoranges for measurement incorporation. The TWTT
measurement error can be turned on and off, using values of 10, 3, 0.3, 0.03, and 0.003

meters.
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3.5 Kalman Filter

A Kalman filter was chosen over a least squares batch filter, as was used in the
research conducted in [8]. The Kalman filter allows for the use of new measurement data
as it becomes available and easily allows for any stochastic processes, such as clock
errors. The least squares estimation algorithm can not use data as it is collected,
requiring all information up front. It also is more difficult to model stochastic processes
in a least squares estimator.

The Kalman filter has several initial values that govern the estimation algorithm.
The filter must know the accuracy level of the incoming measurements and how much to
trust in their positioning information, as well as the amount of process noise in the

system.

3.5.1 [Initial State Values

The first thing needed by the Kalman filter is an initial state, including position,
velocity, and clock error. These initial values are gathered from the truth data, so that the
filter will begin its estimation at the same initial point of the truth data. The state vector

is given in Equation 3.20.

x=[X Y Z X Y 7 Oty cOigy col, cbi,]  (3.20)

where
X,Y,Z = GEO satellite position components
X,Y,Z = GEO satellite velocity components
Oty and Ot ., = GEO satellite clock bias and clock drift
ot,, and ot,, = TWTT reference clock bias and clock drift

¢ = speed of light
If initial state error is turned on, a particular error standard deviation is multiplied

by a random number and added to each initial value. The initial state error standard
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deviations are listed in Table 3.2. These were considered reasonable values for the start

of a simulation run.

Table 3.2: Initial State Error Standard Deviation Values

Initial State Value | Standard Deviation Value
Position 20 m
Velocity 0.01 m/s
Clock bias 14 m
Clock drift 20 m/s

The dynamics matrix F describes the motion of the satellite, and is modeled using

the same equations as the truth generation (see Equation 3.6). The Kalman filter F matrix

includes the clock terms, making it a 10 x 10 matrix, as seen below.

Ty 1[0 o
% 0 0
7 0 0
X -5 0
Y 0 —%
Z 1lo o

C5iGEO 0 0

Olgeo 0 0
Cgiref’ 0 0
Cdi;'ef’ 0 0

where

x=Fx

0 1 00 0O0OO| x
0 01 000O0GO0O| y
0 001000O0O0|
0 000O0O0O0O0| x
0 00 0O0O0OTO0O| Y
4000000 0| Z
0 0000 1 0 0o
0 00000 0 0 a0
0 00 0O0O0 0 1| Oy
0 00000 0 0]y

X,Y,Z = GEO satellite position components

X,Y,Z = GEO satellite velocity components

X,Y,Z = GEO satellite acceleration components
Otipo» Olopy» and 1., = GEO satellite clock bias, drift, and drift rate

Olyyrs Olyyr s
¢ = speed of light
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and ot,, = TWTT reference clock bias, drift, and drift rate



Since the truth generation and Kalman filter use the same dynamics, they will
produce the same results if all errors are turned off. This provides a method for
quantitative error-checking of the code.

The initial covariance matrix P describes the accuracy of the state vector, and will
be updated as the filter iterates. The first six values along the diagonal are for the X, Y, Z
position and velocity values. The last four values along the diagonal are for the clock
bias and drift of the GEO satellite and TWTT reference clocks. The P matrix uses the
values shown in Table 3.2 and is described in Equation 3.23, where subscripts p =

position, v = velocity, c¢b = clock bias, and cd = clock drift.

o’ 0 o 0 0 0 0 0 0
O ¢ 0 0 0 O O 0 0 ©
0O 0 o> 0 0 0 O 0 0 ©
o 0 0 o> 0 O O 0 0 0
o 0 0 0 o 0 O 0 0 O
PW=o 6 0 0 0 62 0 0o o o] ©*
o 0 0 o0 0 0 o, 0 0 O
o 0 o0 o0 O O 0 o/ 0 0
o 0 o0 o0 O O o0 o0 o,/ 0
0 0 0 0 0 0 0 0 0 o,/

The covariance matrix Q describes the errors associated with propagating the
state covariance matrix P through time. The Q matrix includes the process noise value of
the GEO satellite and the related clock g values. The process noise value is equal to the
process noise value used in the truth generation and the clock ¢ values are taken from
Table 3.1, depending upon the type of clocks that are used. Equation 3.24 describes the

Q matrix used in the Kalman filter, and it does not change throughout the simulation.
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000 0 0 O 0 0 0 0
000 0 0 O 0 0 0 0
000 0 0 O 0 0 0 0
000 o 0 O 0 0 0 0

Q- 000 0 o O 0 0 0 0 (3.24)
000 0 0 o 0 0 0 0
000 0 0 0 cql(sv) 0 0 0
000 0 0 O 0 cq,(sv) 0 0
000 0 0 O 0 0 cq,(ref) 0

000 0 0 O 0 0 0 cq,(ref) |
where

o, = GEO satellite process noise

q,(sv) = GEO satellite clock bias process noise
q,(sv) = GEO satellite clock drift process noise
q,(ref’) =reference clock bias process noise
q,(ref’) = reference clock drift process noise

c = speed of light

3.5.2 Filter Execution

Once the initial state vector, dynamics matrix, and covariance matrices are
defined, the Kalman filter is ready to begin. The first step is to calculate the state
transition matrix @ by using the dynamics matrix F and the time interval A¢, shown in

Equation 3.25.
®=c" (3.25)

The next step is to calculate Qq, the discrete time version of the continuous-form

Q matrix.
Q, = fQ(T)QQT(r)dT (3.26)

Next, the filter propagates the state and covariance, as seen below:
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x(t,) =@, —1,)X( ) (3.27)

P(t;) = (I)(tk —liy )P(t;—l)q)T(tk —liy ) + Qd (3-28)

Measurement information for a Kalman filter must follow the equation listed

below.

z(t,) =h[x(,),1, ]+ v(t,) (3.29)

where
z(¢,) = measurement vector at time ¢
v(t,) = zero-mean white Guassian vector process noise of strength R,
independent of process noise

The GPS pseudorange measurements are of the form:

P = = x, Y+ (P =y (2 =2, )+t~ 0, (3.30)

Combined with Equation 3.29, Equation 3.30 implies the following:

h[x(1),8,] = (2 =) + (" = y,0) + (2 —z,,.)} +cbt,, — ot (3.31)

After the h vector equations are written, the observational partial derivative
matrix H is constructed. The H matrix relates the linearized observations to the

estimated states, and is expressed in Equation 3.32.

Hl
HZ
H-= : (3.32)
Hll
where
AL R G R LA ) (3.33)
ox oxX ox
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ShR) _| Sh(X) Sh(X)  Sh(X) (3.34)
ox ox, 0x, ox '

m

The H matrix is of size n by m, where n is the number of collected measurements
and m is the number of states in X (in this simulation, m = 10). For example, if there are
two pseudorange measurements and one TWTT measurement at a given epoch, the H

matrix and measurement vector z will be:

e, e, e 00010 00
H=lel e e 00010 0 0 (3.35)
O 0 0 00 O0O1O0-10
P
z=| p, (3.36)
TWIT
where
— erC_xsat
ex_ sat 2 sat 2 sat 2
V@ =5, )+ (7 =3, + (2 - z,,)
e _ yrec_ysal
y \/(xsat _xrec)Z _I_(ysat _yrec)2+(zsat _ZreC)Z
ZI’EC_Zsat

T VO =5, )+ =y, )+ (2 -2,

The error term v(z;) in the Kalman filter measurement equation is controlled by
the covariance matrix R. The R matrix is specified for a given measurement vector. This
means that each pseudorange measurement will have its own values in the R matrix. The
R matrix is typically based upon expected error statistics, which is based upon knowledge
of the system.

In the example given above, the corresponding R matrix will be:
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R=| 0 o} 0 (3.37)
0 0 O-]%WTT

where
o, = standard deviation value of pseudorange measurement noise

Oy = standard deviation value of TWTT measurement noise

It is now time for the filter to incorporate the measurements, involving several
steps. The filter will calculate the residuals, compute the Kalman gain, and update the
state and covariance.

The residuals are the difference between the predicted state and the observed

state. Residuals are calculated using the following equation:
r=2z(t,)—h(z) (3.38)

The Kalman gain determines the weighting factor that is applied to the
measurement data. The Kalman gain depends upon the covariance and will instruct the
filter to trust the measurement data more or less, depending upon its accuracy. The

Kalman gain calculation is listed below.

K =P(:))H' [HP(z,)H" +R]" (3.39)
where

K = Kalman gain matrix

P(t,) = covariance matrix propagated to next epoch (but before
measurement incorporation)

H = observational partial derivative matrix, which relates the linearized
observations (z) to the estimated states (x)

R = measurement noise covariance matrix

Now the Kalman gain can be used to update the state and covariance, using the

following equations (stated previously in Chapter 2):
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() = ﬁ(z;)+1<(z—h[&(t;),tk]) (3.40)

P()=P(s,)-KHP(r)) (3.41)

Lastly, the filter updates the F, ®, and Qg matrices. In the new epoch, the GEO
satellite will have a new radius, which changes the F matrix. The new F matrix will then
change the @ and Qg4 matrices using the same equations listed above.

Before starting the next iteration, the current filter information is saved into a
history matrix. When the simulation is complete, the history matrix will contain the state,

covariance, and residuals values for each epoch.

3.6 Results Analysis

Analyzing the simulation results involves comparing the Kalman filter estimated
state with the true state. The analysis depends on the simulation type, being either a
single run or a Monte Carlo collection of runs.

The most important result is the three-dimensional positioning error, which will
be expressed as Mean Radial Spherical Error (MRSE). The MRSE is analogous to a
three-dimensional Distance Root Mean Square (DRMS) value. For a Monte Carlo
simulation, the MRSE for a particular epoch is calculated by using the following

equation:

n
(x[2 +y +zf)

MRSE =], (3.42)
n
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where
n = number of simulation runs

x, = X" — X" = difference of truth and filter X position for epoch i
y, =Y — Y™ = difference of truth and filter Y position for epoch i

z, =Z"™ - Z/"" = difference of truth and filter Z position for epoch i

The MRSE value can also be calculated by using the standard deviation values

that exist in the covariance matrix for a particular epoch, as seen below.

(57 +37+2)
MRSE ={\|-= ~,\ ol +0’+o’ (3.43)
" )

where
0,,0,,0, = standard deviation values for the X, Y, Z coordinates

As the number of simulations # increases, the two square root values approach the
same value. Using a Monte Carlo simulation, each run will generate different position
values, but the filter-computed covariance values will be the same for every single run.
As a result, the covariance standard deviation values from a single run can replace the
position values from hundreds of runs in a Monte Carlo simulation.

To insure the covariance values are accurate and the equality assumption is true,
the standard deviation values are first compared with a Monte Carlo simulation using a
high number of runs. If the MRSE computed from the Monte Carlo simulation closely
resembles the MRSE computed from the covariance values of a single run, the model is
validated and only a single run is necessary to calculate the MRSE from that point on.

After the MRSE is calculated for each time epoch, the Root Mean Square (RMS)
is calculated for the entire collection of epochs, using Equation 3.44. The final result is a

single RMS value that depicts the level of error in the estimation filter.
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(3.44)

where
n = number of epochs
x; = MRSE for epoch i

3.7 Summary

This Chapter describes the five main functions of the simuation. The five
functions include loading simulation parameters, generating truth data, generating
measurement data, running a Kalman filter, and analyzing the results. Chapter 4 will

discuss the results and analysis of the simulation.
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4 Results and Analysis

4.1 Introduction

This chapter provides the simulation results and analyses. First, preliminary
results are explained that will allow a better understanding of the simulation data. The
baseline results are then described, giving a reference point from which to compare the
results of each trade study. Five trade studies explore the effects of using GPS ephemeris
data from different days, using a simple or complex GPS receiver model, using simple or
complex antenna gain patterns, using different combinations of clock types in the

receiver and TWTT reference clock, and varying the TWTT measurement noise error.

4.2 Preliminary Results

The primary purpose of this research is to explore the impact of using TWTT
measurements on the positioning accuracy of GPS navigation in a geostationary orbit. As
a first step in validating the simulation model, several Monte Carlo simulations were

performed to analyze the statistical results and confirm the output was reasonable.

4.2.1 Graphical Results

The Monte Carlo simulations consisted of 100 iterations, and sample raw data is
displayed in Figure 4.1. Each line represents the difference between the true position and
the Kalman filter-predicted position over a single simulation run. Each simulation uses
the same parameters but will utilize a different set of random numbers produced by the

random number generator in MATLAB®.
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100 Monte Carlo Runs - Y-Direction Position Error (ECEF)
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Figure 4.1: Monte Carlo Measurements vs Time for 100 Iterations (Standard GPS Receiver
Sensitivity, no TWTT)

The Monte Carlo simulation results are more appropriately displayed by using the
Monte Carlo mean, Monte Carlo mean plus/minus the Monte Carlo standard deviation,
and the covariance calculated by the Kalman filter, as seen in Figure 4.2. The blue line
represents the Monte Carlo mean value at each measurement epoch. Since the Monte
Carlo simulation is composed of 100 iterations, each point on the blue line is the mean of
100 values. The dotted black lines represent the sum and difference of the Monte Carlo
mean and the standard deviation of the Monte Carlo mean. The red lines represent the

covariance values computed by the Kalman filter. As the number of simulation runs
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approaches infinity, the plots of the Monte Carlo mean plus/minus the standard deviation
should exactly match the plots of the filter-computed covariance.

Y-Direction Position Error (ECEF)
80 ‘ ‘ -
Monte Carlo Mean
Filter-Computed Covariance
ffffff Monte Carlo Mean +/- Standard Dev ||

o

Y Distance (meters)

_80 | | | |

0 5 10 15 20
Time (hours)

Figure 4.2: 100-Run Monte Carlo Measurement Mean, Measurement Standard Deviation, and
Filter-Computed Covariance

The Monte Carlo standard deviation results closely match the filter-computed
covariance results, indicating that the covariance analysis will be representative of the
Monte Carlo simulation. Monte Carlo simulations that include TWTT measurements
lead to the same conclusion as the non-TWTT case.

The original intent was to prove that covariance analysis is sufficient to analyze

results by comparing covariance analysis results to Monte Carlo simulations. If single
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runs are proved adequate, the massive computational time of numerous Monte Carlo runs

can be avoided.

4.2.2 Root Mean Square Results

As explained in Section 3.6, the simulation results are provided in terms of Root
Mean Square (RMS) positioning error. The RMS positioning error allows the results to
be condensed into a single number, providing a quick and simple method for comparing
trade study results.

RMS values are normally calculated from a collection of measurement data
gathered from numerous simulations runs, such as a Monte Carlo simulation. Another
method is to use the filter-computed covariance values calculated from a single
simulation run, as opposed to the actual measurement data. As the number of Monte
Carlo simulation runs approaches infinity, the RMS wvalues calculated by using
measurement data should equal the RMS values calculated by using covariance values.
The filter-calculated covariance values will be the same for each simulation run, so
Monte Carlo simulations are not required when using covariance values to calculate RMS
values.

Two scenarios were selected to compare measurement-calculated RMS values
with filter covariance-calculated RMS values. An ovenized crystal clock was assigned to
the GEO satellite receiver while using two different GPS receiver sensitivity settings.
The three-dimensional RMS results are displayed in Table 4.1. These two scenarios use
GPS ephemeris data from January 1, 2006 and the complex GPS receiver model with
complex antenna gain pattern data. These settings are the default for all the simulations

unless otherwise specified.
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Table 4.1: Comparison of Monte Carlo Simulation and Single Run Simulation, no TWTT

Standard Sensitivity | High Sensitivity
(32 dB-Hz cutoff) (12 dB-Hz cutoff)

Monte Carlo 3D RMS 83.90 3.88
Single Run 3D RMS 76.09 3.83
% Difference 10.26% 1.31%

Plotting the 3D position RMS values over time provides another useful way of
comparing the Monte Carlo measurement values to the filter covariance values from a
single run. If the filter is properly estimating the position of the GEO satellite, the filter-
computed covariance 3D position RMS over time curve on the plot should match that of

the Monte Carlo simulation. A plot of the 3D position RMS over time is shown in Figure

4.3.
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Figure 4.3: 3D Position RMS Over Time — Standard Sensitivity, no TWTT

The worst-case scenario is a standard sensitivity receiver with no TWTT
measurements, displayed in Figure 4.3. In the simulation, the standard sensitivity
receiver tracks between zero and four GPS satellites during a 24 hour period (see
Appendix A), resulting in poor measurement precision. The lack of GPS signals is
apparent when looking at the 3D RMS plot, where the measurements curve differs from
the filter-computed covariance curve.

Since few measurements are available to the filter, it must rely heavily on
estimating the satellite position. The covariance will predict how the position, velocity,

and clock errors will propagate, but the lack of measurements will prevent the filter from
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making consistent corrections to its estimation. This is what causes the disparity between
the Monte Carlo results and the covariance results.

Since the Monte Carlo measurements closely match the filter-computed
covariance values and carry the same trends, the model can be considered valid. The
Monte Carlo measurement results can now be replaced with the covariance
measurements from a single simulation run, producing enormous savings in

computational time.

4.3 Baseline Results

A series of six scenarios were selected as the baseline for comparing against the
trade study results. In the baseline analysis, an ovenized crystal clock is used for the
GEO satellite GPS receiver and a Rubidium clock is used for the TWTT reference clock.
All six GPS receiver sensitivity levels are used while switching the TWTT measurements
on and off, resulting in twelve data sets. The GPS receiver sensitivity levels dictate the
C/Ny cutoff for the receiver’s ability to detect and use a GPS signal, as well as the
associated pseudorange error. The sensitivity levels range from 32 dB-Hz (standard) to 7

dB-Hz (ultra high) using 5 dB-Hz increments.

4.3.1 Plotting the Results

The plotted data provides a glimpse inside the simulation mechanics and helps to
show that the model is valid. Certain trends are visible that point to tangible reasons for
the nature of the data.

In situations where the receiver has a lower sensitivity, there will be periods of

time when no GPS satellites are visible and the filter will need to rely completely upon its
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process model estimating the state of the satellite. Over time, errors will propagate and
the filter’s prediction will diverge from the true position, as will the filter’s confidence in
the accuracy of the predicted position values. When a satellite comes into view, the filter
will once again receive measurement data and can finally reduce the uncertainty. In the
case of clock bias error, these rapid corrections are plainly visible in Figure 4.4. The blue
line in Figure 4.4 represents the difference between the filter-predicted state and the true
state, while the red line represents the filter-computed covariance. If the filter is accurate,

the measurement values should stay within the boundaries of the covariance.

GEO Clock Bias Error
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Figure 4.4: GEO Satellite Clock Bias Error Filter Covariance for a Single Run (Standard Sensitivity
with no TWTT Measurements)
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Figure 4.5: Visible GPS Satellites from GEO Satellite (Standard Sensitivity)

In Figure 4.4, the rapid covariance growth is directly linked to the periods where
zero GPS satellites are visible. The filter-computed covariance of clock bias error grows
when there are no available measurements, since the filter is continually losing
confidence in the prediction. When measurements become available, the filter can
immediately correct the prediction of the clock state, shrinking the covariance drastically
as the filter is once again confident in the predicted clock state.

When TWTT measurements are included, the filter never relies solely on
prediction for the clock state. The reference clock provides bias, drift, and drift rate
information to the filter, allowing it to more accurately predict the velocity and position

states. Figure 4.6 is based on exactly the same GPS satellite visibility as Figure 4.4, but
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now includes TWTT measurements. The drastic jumps in the covariance disappear since

the filter never experiences clock measurement blackouts.
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Figure 4.6: GEO Satellite Clock Bias Error Filter Covariance for a Single Run (Standard Sensitivity
with TWTT Measurements Included)

When using a higher sensitivity receiver, the filter is able to more adequately
correct the estimated state. Figure 4.7 illustrates the clock bias error of a medium
sensitivity receiver with TWTT measurements turned on and off. The higher sensitivity
receiver is able to track more GPS signals and allow the filter to predict the clock state
more accurately than the receiver depicted in Figure 4.6. When TWTT measurements are
included, the clock state prediction improves further and the covariance is smaller than

the non-TWTT case.

76



Clock Error (meters)

Clock Error (meters)

20

15

10

ol

o

'
[¢)]

GEO Clock Bias Error

A

|
"
Il

\/

Filter-Computed Covariance ‘

ARV VP

0 5 10
Time (hours)

GEO Clock Bias Error

20

15

10

(4]

o

'
(4]

101

-15

-20
0

15

20

Filter-Computed Covariance

%m,

5 10

15

Time (hours)

20

Figure 4.7: GEO Satellite Clock Bias Error with TWTT Turned Off (top) and On (bottom) (Medium

A similar outcome is also apparent when looking at the position error.

Sensitivity)

example, the X-direction position error is shown in Figure 4.8.
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Figure 4.8: Geo Satellite X-Direction Position Error with TWTT Turned Off (top) and On (bottom)
(Medium Sensitivity)
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Plotting the simulation results can explain behaviors that would naturally be
expected in the real-world system. By visually verifying these events in the data, the

simulation model can be trusted with greater confidence.

4.3.2 Position Error

The compiled RMS position error data for the baseline case is listed in Table 4.2.
The X, Y, and Z position errors are expressed as RMS values over time. For example, all
the filter covariance X values over the entire simulation run time are squared and
summed. This value is divided by the entire number of measurement epochs to calculate
the mean of the squared values. The square root of the mean value results in the RMS
value, condensing the entire simulation run into a single number for evaluation. After the
initial state is declared, the simulation runs for 23 hours and 45 minutes with 60-second
measurement intervals, resulting in 1,426 measurement values.

The three-dimensional RMS value, labeled 3D in Table 4.2, is calculated in a
slightly different manner. When using Monte Carlo measurement data, the RMS values
are calculated to find the three-dimensional position error for each measurement epoch
(refer to Section 3.6). When using filter covariance values to calculate a three-
dimensional position error, a root sum square (RSS) is used instead of the RMS (see
Equation 3.43). All X, Y, and Z values are squared and summed and then the square root
is calculated. The result is 1,426 RSS values that represent the three-dimensional
position error for each epoch. In order to reduce this data into a single number for
comparison, the RMS value of all the RSS values is calculated, providing the single

number to describe the three-dimensional position error.

79



Table 4.2: Simulation Baseline Results — RMS Position Error Values per Reciever Sensitivities

R :c}el;ser Cutoff | RMS Position RMS Position Error (m) :{:)):i)tt;z;ezii (1)1;
Sensitivity (dB-Hz) Type no TWTT Rb TWTT by Using TWTT
3D 76.09 60.32 20.73%
Standard B X (Radial) 66.44 55.49 16.48%
Y (In-track) 27.69 17.60 36.43%
Z (Cross-track) 24.68 15.78 36.06%
3D 31.87 24.10 24.36%
Standard 27 X (Radial) 30.19 22.32 26.07%
Plus Y (In-track) 8.10 6.97 14.02%
Z (Cross-track) 6.18 5.85 5.40%
3D 11.34 7.71 32.04%
Medium 7 X (Radial) 10.54 6.56 37.76%
Y (In-track) 3.11 2.97 4.41%
Z (Cross-track) 2.80 2.74 1.97%
3D 6.32 4.08 35.43%
Medium 17 X (Radial) 5.87 3.38 42.49%
Plus Y (In-track) 1.70 1.66 2.38%
Z (Cross-track) 1.60 1.58 1.09%
3D 3.83 2.40 37.43%
High 12 X (Radial) 3.56 1.95 45.15%
Y (In-track) 1.02 1.00 1.65%
Z (Cross-track) 0.97 0.96 0.83%
3D 2.36 1.48 37.55%
Ultra High 7 X (Radial) 2.19 1.18 46.14%
Y (In-track) 0.65 0.64 1.18%
Z (Cross-track) 0.63 0.62 0.68%

4.4 Trade Study 1: Ephemeris Date

To ensure the simulation does not depend upon the ephemeris data for a specific
day, nine additional days were selected for comparison. One day was selected out of each
year from 1997 to 2006, providing a comprehensive evaluation pool. Each simulation
was identical, other than the different ephemeris date, and used the worst-case scenario of
a standard sensitivity receiver with no TWTT measurements. The results of the study are

listed in Table 4.3.
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Table 4.3: Various Dates of Ephemeris and Resulting RMS Position Errors

Ephemeris | RMS Position | RMS Position | % Difference | | Ephemeris | RMS Position | RMS Position | % Difference
Date Type Error (m) |from 1-Jan-06 Date Type Error (m) |from 1-Jan-06
3D %09 3D 79.07 3.91%
| Tan06 X (Radial) 6644 1 " |1 -Nov.01 | X (Radial) 68.01 2.36%
Y (In-track) 2160 7 Y (In-track) 30.58 10.44%
Z(Cross-track)) 2468 | | Z (Cross-track)]  26.28 6.49%
3D 68.39 10.12% 3D 78.18 2.74%
1 2 0, 1 ) o,
27 -Mar-05 X (Radial) 61.29 7.76% 6-Aug-00 | X Radial) 68.13 2.54%
Y (In-track) 22.68 18.09% Y (In-track) 30.41 9.84%
Z (Cross-track) 20.19 18.20% Z (Cross-track) 23.36 5.37%
3D 70.95 6.76% 3D 77.45 1.78%
H 0, N 20,
16-May-04 | (Radial) 63.51 1.41% 20-Tune09 | X (Radial) 66.36 0.12%
Y (In-track) 25.56 7.67% Y (In-track) 28.74 3.81%
Z (Cross-track) 18.61 24.60% Z (Cross-track) 27.71 12.27%
3D 74.29 2.36% 3D 80.72 6.09%
1 2 0, 1 2 g0,
6Apr-03 X Radial 64.02 3.63% 26.Tulog |X (Radial 68.38 2.92%
Y (In-track) 28.90 4.38% Y (In-track) 31.59 14.08%
Z (Cross-track) 24.19 1.98% Z (Cross-track) 29.03 17.61%
3D 76.78 0.91% 3D 89.50 17.63%
- 2 o, M 0,
15-Sep-02 | (Radial) 66.42 0.03% 10- Aug-07 | (Radial) 71.87 3.18%
Y (In-track) 26.67 3.68% Y (In-track) 40.56 46.49%
Z (Cross-track) 27.79 12.59% Z (Cross-track) 34.64 40.34%

For additional insight, the mean value and standard deviation were calculated

across all ten ephemeris dates, given in Table 4.4.

Table 4.4: RMS Position Error Measurement Mean and Standard Deviation Across all Ten
Ephemeris Dates

RMS Position Standard
Mean (m) o
Type Deviation (m)
3D 77.14 572
X (Radial) 66.44 2.97
Y (In-track) 29.34 4.75
Z (Cross-track) 25.65 4.58

The three-dimensional RMS position error mean value is approximately one
meter greater than the value for the default January 1, 2006 ephemeris date. This ensures
that the 2006 date will be a good representation of the expected values for the simulation
at any given time. The 3D RMS standard deviation is less than six meters which is well

within acceptable boundaries for instilling confidence in the simulation model.
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Trends in the GPS satellite visibility provide another look at the simulation
model’s validity. Ephemeris data from each of the ten dates produced very similar
visibility trends, as they all vary from zero to four with an average of approximately two.
Samples of GPS satellite visibility plots are located in Figure 4.9. For the case of a
standard sensitivity receiver and no TWTT measurements, the number of visible satellites
ranged from zero to four. The only exception was when five GPS satellites were visible
for a brief period while using the 2003 ephemeris data. This was the only time more than
four satellites were visible.

By examining the RMS position error values and visible GPS satellite plots, it is
apparent that differing ephemeris dates do not have a significant impact on the results of

the simulation. The simulation is accurate and consistent for any ephemeris data that is

used.
Mumber of Visible Satellites vs. Time Mumber of Visible Satellites ve. Time
4 T T T T 4
1997 1999
36} Bl 35 -
L - 3
g ° £
T T
w25 i =25k
& i
@ Z
Z ot 3 o2p
> >
k=] k=]
E 151 E 1.5¢
5 =
=z 1 z 1r
) \ H H H H H _ B H H H
o A L . . o ! L L
o & 10 15 20 o S 10 15 20
Time (hours) Time (haurs)
Mumber of Visible Satellites vs. Time Mumber of Wisible Satellites ve. Time
4 4 y T T T
2001 2004
86 Bl 3.5
3 3L

2

o

2]

Mumber of Visible Satellites
L]

Mumber of Visible Salellites
r

0.

m

I |
% @um | ﬂ\ﬂ

RN

[u] S 10 15 20
Tirme (hours) Time (hours)

Figure 4.9: GPS Satellite Visibility Plots for a GEO Satellite Using Four Different Ephemeris Dates
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4.5 Trade Study 2: GPS Receiver Models

The simulation contains a simple and a complex GPS receiver models. The
simple reciever model is strictly concerned with satellite look angles and does not
calculate signal path loss, varying degrees of pseudorange measurement noise error, or
varying gain patterns. If the GEO satellite is within a GPS satellite’s main beam field of
view and is not obscured by the Earth, the receiver is assumed to be able to gather a
pseudorange measurement. This measurement is simply the vector distance between the
two satellites with the addition of white, Gaussian measurement noise with a five-meter
standard deviation.

The complex receiver model calculates the received signal strength taking into
account transmit and receive antenna gain patterns and path loss, as described in Section
3.4.3. The received signal strength dictates whether or not a pseudorange measurement is
available, and if so, measurement noise error, as described in Section 3.4.3.

The simple GPS receiver model is dependent upon the look angle of the GPS
satellite. A smaller look angle will limit the number of satellite that the GEO satellite can
track simultaneously, while a larger look angle will allow the GEO satellite to track more
GPS satellites. The first part of this trade study examines varying the look angle of the
GPS satellites and the results are seen in Table 4.5. The 42.6° angle is a common
representation of the GPS Block II/IIA main beam, as seen in [1] and others. The 38° and
120° angles were chosen to mimic the Block IIR main beam and Block IIR UHF
crosslink beam as shown in [20]. The 50° angle was chosen arbitrarily to represent a

modest increase over the commonplace 42.6° Block II/IIA main beam.
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Table 4.5: Simple Model RMS Position Error Results with Pseudorange Measurement Noise Error
Standard Deviation of 5 meters

GPS Look | BEMS Position | EMS Position Error (m) | %% Decrease in Position

Angle Tvpe no TWIT | R ITWIT Error using TWTT
3D 00.45 68.34 24 45%
38" X (Radial) 7393 61.88 16.30%
T {In-track) 40.63 20.68 40.10%
Z {Cross-track) 32.64 20.34 37.60%
3D 12.66 36.84 21.78%
26 X (Radial) 63.93 5223 18.31%
¥ {In-track) 27.66 15.89 42.56%
Z {Cross-track) 20.67 15.83 23.44%
3D 5139 38.20 23.72%
50° X (Radial) 47.17 36.12 2343%
¥ {In-track) 15.67 10.56 32.3%%
Z {Cross-track) 13.05 10.98 15.88%
3D 6.72 4134 35453%
120° X (Radial) 636 378 40.63%
Y {In-track) 1.32 149 2.05%
Z (Cross-track) 1.33 1.53 041%

When comparing with the complex GPS receiver model, there are similarities
between the simple model’s 42.6° look angle and the complex model’s standard
sensitivity level. The 120° look angle scenario is also similar to the medium plus

sensitivity level. These traits are listed in Table 4.6.

Table 4.6: Comparison of Simple and Complex GPS Receiver Model RMS Position Error Values

GPS Look | RMS Position | RMS Position Error (m)| %6 Decrease| |GPS Receiver| Cutoff | RMS Position | RMS Position Error (m) | %0 Decrease
Angle Type ne TWIT | Rb TWIT |Using TWTT Sensitivity |(dB-Hz) Tvpe no TWIT | Rb TWIT |Using TWTT
D 12.66 56.84 21.78% 3D 76.09 60.32 20.73%
9§ X (Radial) 55.93 :'-_?.23 18.%1!'-?, Standard 1 }_s (Radial) 5?.44 S§.49 15.48’!':0
Y (In-track) 27.66 15.89 42.56% ¥ {In-track) 27.69 17.60 36.43%
Z (Cross-track)] 20,67 15.83 23.44% Z (Cross-track)|  24.68 15.78 36.06%
D 6.72 434 35.45% 3D 6.32 4.08 35.43%
. X (Radial) 6.36 3.78 40.63% . - X (Radial) 387 3.38 42.48%
120° = 5 Medium Pl 17 = 5
¥ (In-track) 152 145 2.03% Femm s ¥ (In-track) 1.70 1.66 2.38%
Z (Cross-track) 1.53 1.53 0.41% Z (Cross-track) 1.60 1.58 1.0%%

The approximated Block II/IIA antenna main beam angle in the simple model
produces results very similar to the standard sensitivity level in the complex model. This
suggests that the simple model might be sufficient for examining scenarios that involve
nominal equipment and values, where it is safe to assume all pseudorange measurement

noise errors follow a standard deviation of five meters. Specialized hardware with higher
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sensitivity levels will most likely require the complex model to represent the system.
Still, the fact that the standard case shows correlation between the simple and the
complex models further proves that the simulation is reliable.

The second part of this trade study explores various pseudorange measurement
noise error standard deviation values and their effect on three-dimensional positioning
accuracy for the simple receiver model. The pseudorange measurement noise error
standard deviation is varied between 1, 2, 3, 5, and 7 meters, the results being listed in

Table 4.7.

Table 4.7: Simple Model RMS Position Error Results with Varying Pseudorange Measurement Noise
Error Standard Deviations and GPS Look Angle of 42.6°

Pzeudorange EAMIS Position | BEMS Position Error (m) | % Decrease in Position
Measurement Error ¢ Type no TWIT | Rb TWIT Error using TWTT

3D 51.20 34.22 33.17%
™ X (Radial) .37 30.50 31.24%
¥ (In-track) 2101 10.67 45.20%
Z (Cross-track) 14.57 11.26 22.74%
D 39.73 4214 20.44%
I m X (Radial) 5242 38.18 27.16%
¥ (In-track) 2327 12.34 46.07%
Z (Cross-track) 16.68 12.90 22.70%
3D 63.46 4826 26.27%
im X (Radial) 57.68 408 23.33%
¥ (In-track) 23.00 13.68 43.26%
Z (Cross-track) 18.23 14.03 23.00%
D 12.66 56.84 21.78%
5 m X (Radial) 63.93 32.23 18.31%
¥ (In-track) 27.66 15.89 42.36%
Z (Cross-track) 20.67 15.53 213.44%
D 1717 62.37 19.17%
T X (Radial) 67.43 57.23 15.12%
' ¥ (In-track) 20.88 17.72 40.72%
Z (Cross-track) 22.62 17.28 23.61%

There are distinct similarities between the 7 meter standard deviation value in the
simple model and the standard sensitivity level in the complex model. The correlation is

shown in Table 4.8.
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Table 4.8: Comparison of Simple and Complex GPS Receiver Models Based on Pseudorange Error

Pseudorange EMS Position | EMS Position Error (m)| %0 Decrease
Measurement Error ¢ Tvpe no TWIT | Rb TWIT |Using TWTT
3D 7717 6237 19.17%
Tm X (Radial) 6745 37235 15.12%4
' ¥ {In-track) 2088 17.72 40.72%
Z (Cross-track)] 22.62 1728 23.61%
GPS Cutoff | RMS Position | EMS Position Error (m)| %0 Decrease
Receiver | (dB-Hz) Type no TWIT | Rb TWIT |Using TWTT
3D 16.09 60.32 20.73%
. X (Radial) 66.44 3549 16.458%
Standard | 32 Y (ntrack) | 2769 17.60 36.43%
Z (Cross-track)] 24.68 15.78 36.06%

The standard sensitivity level in the complex GPS receiver model limits the
number of GPS satellites that are visible to the GEO satellite. The few satellites that are
available will most likely be large look angles where the antenna gain patterns will
provide the least amount of signal strength to the receiver. Low received signal strength
will incur a higher pseudorange measurement noise error. For the complex model, the
pseudorange measurement noise error is 15 meters at the receiver’s signal strength cutoff
boundary (i.e., the lowest signal power that can provide a pseudorange measurement). It
makes sense that a 7-meter pseudorange error value would best represent the standard

sensitivity level when using the simple model.

4.6 Trade Study 3: Gain Pattern Models

As stated in Section 3.4.3, there are two GPS antenna gain pattern models
available for the complex GPS receiver model, taken from two different sources. The
simple antenna model provides gain pattern data from nadir to 43°, while the complex
model provides data from 0° to 180° off-boresight. Both gain pattern models replicate the

GPS Block II/IIA transmit antenna. The primary and secondary lobes are contained in
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the 0°-43° portion of the transmit beam (refer to Figure 3.4). Additional lobes exist at
higher angles, but the gain is very small. Because the gains are so small at high angles,
the complex gain pattern becomes more beneficial as the GPS receiver sensitivity

increases. Table 4.9 displays the results of this trade study.

Table 4.9: Comparison of Simple and Complex GPS Gain Pattern Models and Resulting RMS
Position Error Values

Complex GPS Gain || Simple GPS Gain
Pattern Model Pattern Model 9% Difference in Complex and
GPS Receiver| Cutoff | RMS Position | EMS Position Error (m) || RMS Position Error (m) Simple Pozition Error
Sensitivity |(dB-Hz) Tvpe no TWIT | Rb TWIT || no TWIT | Rb TWIT no TWTT Rb TWIT
iD 16.09 60.32 83.34 69.54 12.16% 13.30%
Standard 12 :is'.fRadial) 5?.44 :'-E'-.-IQ E_‘-'.S_’-' 53.9? S_'S{'%. 1%.59’!':0
¥ (In-track) 27.69 17.60 3484 20,67 23.54% 17.46%
Z (Cross-track) 24.68 15.78 28.08 20.71 17.42% 31.24%
iD 31.87 24.10 30.02 21.57 -5.80% -10.42%
Standard Plus| 27 %{(Radial} 30.19 _’-_’-'.3__’-' 2829 19.64 -5.3:]?%. -IE.REI_SEIE
Y (In-track) §.10 6.97 8.09 6.04 020% 037%
Z (Cross-track) 6.18 3.83 3.93 3.63 -3.84% -3.73%
iD 1134 171 16.79 10.98 48.03% 42.47%
Medium 13 fi{(Radial} 10.54 5.5? 16.04 9.?2— }'-_‘-.IS‘!'{: 51.25‘!'{:
Y (In-track) 311 297 3.83 3.58 23.40% 20.60%
Z (Cross-track) 2.80 2.74 3.12 3.04 11.68% 10.82%
iD 6.32 4.08 10.82 6.40 T1.24% 36.97%
Meditm Plis 17 Zi{(Radial} 5.?7 3.38 13.4_1 :'-.T-E 77.%3‘!'-:; 73.39‘!'-:;
W (In-track) 1.70 1.66 223 215 32.70% 30.06%
Z (Cross-track) 1.60 1.58 1.88 1.84 17.72% 16.24%
iD 3.83 240 1.06 3.80 §4.33% 38.61%
Hish 12 :is'.fRadial) 3.36 1.93 6.83 3.38 91.71’!':0 TS.EI:'-’!':o
b ¥ (In-track) 1.02 1.00 1.36 1.32 33.88% 31.60%
Z (Cross-track) 0.97 0.96 1.16 1.13 19.44%% 17.69%
iD 236 1.48 473 239 100.30% 62.08%
. - X (Radial) 2.19 1.18 459 212 110.13% 79.69%
Ultra H i & e
aHigh Y (In-track) 0.65 0.64 0.87 0.84 34.14% 32.06%
Z (Cross-track) 0.63 0.62 0.75 0.73 19.91% 18.10%

As mentioned previously, the complex gain pattern is required when the GPS
receiver sensitivity increases. For the standard sensitivity, where the small gains that
exist at high look angles cannot be utilized, the simple gain pattern will most likely be
sufficient for accurate simulation results.

When using a “standard plus” sensitivity level, the simple gain pattern appears to
be more accurate than the complex gain pattern. This is most likely due to slight

differences in the lobe sizes and positions between the two gain pattern models. The
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minimum gain value between the primary and secondary lobes is different by a few
degrees between the two models, which could cause the accuracy of the simple gain

pattern model to be exaggerated in this particular situation.

4.7 Trade Study 4: Clock Type Selection

Three types of clocks are available in the simulation model. An ovenized crystal
clock represents an inexpensive, commonly-used clock that would be onboard most
common satellites. The Cesium and Rubidium atomic clocks represent hardware that
provides much greater precision and accuracy in time measurements. GPS time is
governed by high-quality atomic clocks like the Rubidium clock in this model.

This trade study examines the impact of atomic clocks on three-dimensional
position error. Because pseudorange measurement accuracy is bound to the quality of the
clock involved, it is expected that higher-accuracy clocks will provide smaller position

errors. The results of this trade study are listed in Table 4.10.

Table 4.10: Comparison of Clock Types and Resulting 3D RMS Position Error Values (in meters)

GEO | TWTT Ref GPS Receiver Sensitivity
Clock Clock Standard | Standard+ | Medium | Medium+ High Ultra High
(32 dB-Hz) | (27 dB-Hz) | (22 dB-Hz) | (17 dB-Hz) | (12 dB-Hz) | (7 dB-Hz)
Crystal None 76.09 31.87 | 11.34 6.318 3.830 2.363
Crystal Cesium 60.33 2412 | 7.722 4.103 2431 1.518
Crystal | Rubidium 60.32 24.10 7.707 4.080 2.396 1.476
Cesium None 60.37 2416 | 7.772 4.135 2.447 1.518
Cesium Cesium 60.31 2410 | 7.702 4.080 2.400 1.482
Cesium | Rubidium 60.31 24.09 7.697 4.071 2.386 1.464
Rubidium None 60.36 2414 | 7.757 4112 2.413 1.476
Rubidium | Cesium 60.30 2409 | 7.696 4.070 2.385 1.461
Rubidium | Rubidium 60.30 24.09 7.694 4.067 2.381 1.456
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As expected, the inclusion of TWTT measurements provides smaller position
errors, as does a more accurate clock. As the sensitivity of the GPS receiver increases,
there is a smaller percent decrease in position error. With the high sensitivity receiver,
there are enough quality measurements to drastically reduce the clock error, so the
addition of TWTT measurements is less significant. The percent decrease in 3D RMS

position error per scenario is listed in Table 4.11.

Table 4.11: Percent Decrease in 3D RMS Position Error Compared to Scenario Using Ovenized
Crystal GEO Satellite Clock, no TWTT, Standard Sensitivity Receiver

GEO | TWTT Ref GPS Receiver Sensitivity
Clock Clock Standard | Standard+ | Medium | Medium+ High Ultra High
(32 dB-Hz) | (27 dB-Hz) | (22 dB-Hz) | (17 dB-Hz) | (12 dB-Hz) | (7 dB-Hz)
Crystal None .
Crystal Cesium 20.71% 24.31% 31.91% 35.06% 36.54% 35.77%
Crystal | Rubidium | 20.73% 24.36% 32.04% 35.43% 37.43% 37.55%
Cesium None 20.66% 24.19% 31.47% 34.55% 36.12% 35.75%
Cesium Cesium 20.74% 24.38% 32.08% 35.43% 37.34% 37.28%
Cesium | Rubidium | 20.74% 24.39% 32.13% 35.57% 37.70% 38.04%
Rubidium None 20.68% 24.23% 31.60% 34.92% 37.00% 37.54%
Rubidium | Cesium 20.75% 24.40% 32.14% 35.58% 37.74% 38.16%
Rubidium | Rubidium | 20.75% 24.40% 32.15% 35.62% 37.83% 38.37%

It is interesting to note that the inclusion of an atomic clock makes a remarkable
impact on the position error. As long as there is at least one atomic clock involved in the
navigation process, the highest accuracy is achieved. For example, when a Rubidium
TWTT reference clock is introduced to an ovenized crystal clock on the GEO satellite,
the effect is the same as having a single Rubidium clock on the GEO satellite, or a
Rubidium clock in both locations. The difference between these three scenarios is on the
order of millimeters of three-dimensional position error. This means that a cheap, simple,

durable clock can be placed on a satellite in a harsh unstable environment, while the
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expensive, complex, fragile atomic clock can reside at a TWTT reference clock station on

Earth in a controlled environment.

4.8 Trade Study 5: TWTT Measurement Noise Error

TWTT measurements are subject to measurement noise error, just as the

pseudorange measurements are.

measurements will become more accurate, lowering the amount of error.

It is expected that as technology advances, TWTT

This trade

study examines the impact of varying TWTT measurement noise error, ranging between

standard deviation values of 10, 3, 0.3, 0.03, and 0.003 meters. Table 4.12 displays the

results of varying the TWTT measurement noise error standard deviation. Gaps in the

table exist because some scenarios were deemed of lesser importance and eliminated to

save computation time.

Table 4.12: Comparison of Various TWTT Measurement Noise Error Standard Deviation Values
and Resulting 3D RMS Position Errors (in meters)

90

GEO TWTT TWIT GPS R_eceiver Sen!_;itivity ) )
Ref |Measurement| Standard | Standard+ | Medium | Medium+ High Ultra High
Clock | C1ock | Error o (m) | (32 dB-Hz) | (27 dB-Hz) | (22 dB-Hz) | (17 dB-Hz) | (12 dB-Hz) | (7 dB-Hz)
10 63.582 77 .. 8155 7 .. 3.006 17
3 60.911 24.563 7.849 4.224 2.597 1.739
Crystal | Cesium 0.3 60.330 24.118 7.722 4.103 2431 1.518
0.03 60.323 24.111 7.718 4.099 2.424 1.509
0.003 60323 7| 7718 | 2424 )
10 63575 ... 8.143 7 L3093 17
3 60.899 24.551 7.836 4.202 2.567 1.710
Crystal | Rubidium 0.3 60.317 24.103 7.707 4.080 2.396 1.476
0.03 60.310 24.09 | 7703 4076 | . 2390 1.466
0.003 60.310 | 7.703 | 2.390 %
10 60306 77 . 7700 7 XTI
3 60.305 24.090 7.696 4.070 2385 1.462
Rubidium  Rubidum 0.3 60.304 24.089 7.694 4.067 2381 1.456
0.03 60.303 24.088 7.694 4.067 2.380 1.456
0.003 60.303




Varying the TWTT measurement error has a small effect on the position accuracy
in the simulation. When the 3D RMS position error is 24 and 60 meters, having a TWTT
measurement accuracy greater than 3 meters will gain 50-60 centimeters of position
accuracy. When the position error is 1-7 meters, increasing the TWTT measurement
accuracy beyond 3 meters gains 0-30 centimeters.

Overall, the accuracy of the TWTT measurements is not extremely critical. In
some cases it will provide half a meter of increased accuracy, but it is usually less than

that.

4.9 Additional TWTT Study - TWTT Reference Clock Locked to GPS Time

The investigation of the impact of TWTT measurements on GPS navigation led to
another scenario concept that involved a reference clock that is synchronized with GPS
time. If the reference clock could exactly match GPS time, then the receiver clock error
could be essentially removed from the pseudorange measurement using the TWTT
measurement. In this case, the TWTT reference clock errors are not estimated by the
Kalman filter (since they are zero), as they were in the previous cases. Using the TWTT
with the reference clock synchronized to GPS time significantly reduced the position
error, as shown in Table 4.13. The use of TWTT in this mode resulted in 60-70%

improvement in positioning accuracy, depending on the receiver sensitivity.
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Table 4.13: Comparison of 3D Position RMS Error (meters) When Using a TWTT Reference Clock
that is Synchronized with GPS Time

GPS Receiver Sensitivity

GEO Ultra
Clock TWTT Standard | Standard+ | Medium | Medium+ High High
(32 dB- (27 dB- (22dB- | (17 dB- (12 dB- (7 dB-

Hz) Hz) Hz) Hz) Hz) Hz)

Crystal None 76.09 31.86 11.34 6.32 3.83 2.36
Rubidium None 60.36 24.14 7.76 4.11 241 1.48
Crystal Rubidium 60.32 24.10 7.71 4.08 2.40 1.48
Rubidium | Rubidium 60.30 24.09 7.69 4.07 2.38 1.46

GPS
Crystal Time 22.93 9.01 4.07 2.33 1.44 0.95

4.10 Summary

This chapter outlined the simulation results and provides analysis of the data.
The baseline results provide the fundamental information used to compare against each
trade study. The trade studies included using ephemeris data from different days, using a
simple and complex GPS receiver model, using a simple and complex GPS antenna gain
pattern, varying the clock types found on the GEO satellite and TWTT reference station,
and adjusting the TWTT measurement error.

The results indicate that changing the ephemeris date has no effect on the
simulation data, so the model is valid for any day. The simple GPS model and GPS gain
pattern proved useful for low sensitivity receivers, but the complex model and gain
pattern are required for mid- to high-sensitivity receivers. As long as a single high-
accuracy atomic clock is available somewhere in the system, either on the satellite or
supplied via TWTT measurements, the position accuracy is the same. Having a TWTT
measurement error standard deviation smaller than 3 meters had little effect on the three-

dimensional position error of the satellite. A value of 30 centimeters proved to be as

beneficial as a value of 3 centimeters. Most importantly, providing a TWTT reference
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clock which is slaved to GPS time offers radical position accuracy enhancements, far
beyond what is achievable with current GPS receivers alone.
Chapter 5 will provide summary conclusions and recommendations for future

research in this area.
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5 Conclusions and Recommendations

5.1 Significance of Research

The goal of this research was to evaluate the benefits of Two-Way Time Transfer
measurements when used to augment GPS navigation at very high altitudes like
geostationary orbit. At this altitude, the receiver is above the GPS satellite constellation,
a location where the GPS system was not designed to provide navigation information.
The satellite geometry at GEO severely limits the number of usable GPS satellites, since
the Earth occludes most of the GPS signals from the GEO satellite. In order to produce
navigation information, a minimum of four satellites are needed to solve for the three
dimensional position and clock error. When less than four satellites are available, the
clock error cannot be resolved and the information provided is not very useful.

TWTT provides a method for resolving the clock error when less than four GPS
satellites are visible. TWTT is a technique that involves simultaneously exchanging
signals between two or more clocks and is one of the most accurate ways to compare
clocks. With TWTT measurements, the clock error between the GPS satellite transmitter
and the GEO satellite receiver can be resolved, allowing useful information to be gleaned
from any number of visible satellites, even if it is less than four.

This capability allows any standard GPS receiver to operate effectively on a GEO
satellite with reasonable accuracy. Accurate GPS navigation in high-altitude orbits
provides numerous opportunities, such as automated station-keeping in a GEO orbit.
Also, by substituting automation and removing the ground-based ranging systems, the

cost reduction incurred by reducing ground support is considerable.
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To summarize the key results into a single figure, five scenarios were selected: 1)
Ovenized crystal GEO clock, no TWTT, 2) Rubidium GEO clock, no TWTT, 3)
Ovenized crystal GEO clock, TWTT to Rubidium reference, 4) Rubidium GEO clock,
TWTT to Rubidium reference, 5) Ovenized crystal GEO clock, TWTT to clock
synchronized to GPS time. Each of these scenarios were run. The three-dimensional

Root Mean Square (3D RMS) position error for each simulation run is provided in Figure
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Rb GEO, Rb TWTT 60.30 24.09 7.69 4.07 2.38 1.46
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GPS Receiver Sensitivity Level

Figure 5.1: Keystone Plot — 3D RMS Position Error vs. GPS Receiver Sensitivity Levels and Clock
Configurations

This is the key plot that captures the essence of this thesis research, as it clearly
describes the benefit of including TWTT measurements with GPS pseuodrange
measurements for navigation. Introducing an atomic clock provides some positioning

improvement, but the breakthrough occurs when the TWTT reference clock is
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synchronized with GPS time, offering a 60-70% reduction in three-dimensional position
error.

The precise clock does not necessarily need to reside on the satellite, but rather
can be placed on Earth where it can be better protected and maintained. Also, if the
precise clock fails, the on-orbit satellite is not rendered inoperable. Ovenized crystal
clocks are less complex and more robust, making them a better candidate for space flight,
further emphasizing the importance of keeping the precise atomic clock on the ground.

The idea of using TWTT measurements in GPS navigation has been explored in
the original user environment on Earth, and provided exceptional accuracy
improvements. By now addressing TWTT measurements used in GPS navigation in

high-altitude orbits, such as GEO, the accuracy improvements are even more remarkable.

5.2 Trade Studies
A number of additional trade studies were performed using this simulation.

Results are summarized in the sections that follow.

5.2.1 Baseline Results

The baseline results are the primary research results and are compared with the
trade studies. These primary results consist of six GPS receiver sensitivity levels that are
used with and without TWTT measurements. The GEO satellite clock is an ovenized
crystal clock, the TWTT reference clock is a Rubidium clock, and the TWTT
measurement error standard deviation is 0.3 meters.

It is apparent that increasing the sensitivity level of the GPS receiver provides the

greatest improvement in measurement accuracy. Using a single GPS receiver with a
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predefined sensitivity level, the inclusion of TWTT measurements does allow for
significant positioning accuracy improvements that would otherwise not be available.
This improvement ranges from 21% (when using a standard sensitivity receiver) to 38%

(when using an ultra high sensitivity receiver).

5.2.2 Trade Study 1: Ephemeris Date

To ensure that the simulation model does not depend on ephemeris data, ten
separate days were tested. The same scenario was run for each day and the results were
examined to find similar trends that would suggest correlation.

The mean 3D RMS position error value is 77.14 meters, while the standard
deviation is 5.72 meters. The standard deviation is less than 10% of the mean value,
insinuating that there are no large anomalies when varying the ephemeris data. The GPS
satellite visibility plots for each ephemeris date are very similar, each providing the same
general level of satellite coverage to the GEO satellite. These findings indicate that the
output of the simulation model will not be corrupted by slight differences in ephemeris

data, thus the model is valid for any day.

5.2.3 Trade Study 2: GPS Receiver Models

The simulation model contains two types of GPS receiver models. The first type
is a simple model that only examines the maximum look angle of the GPS satellite and
the cutoff angle between the GPS satellite and the Earth that obscures the GEO satellite.
The simple model uses a constant pseudorange measurement noise error standard

deviation value. The second type is a complex model that accounts for look angles, gain
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patterns, signal strengths, and varying pseudorange measurement error standard deviation
values.

The first part of this trade study examines the effect of GPS satellite look angle on
the GEO satellite 3D RMS position error. Increasing the GPS satellite look angle has a
similar effect as increasing the GPS receiver sensitivity level in the baseline results. The
42.6° look angle is comparable to the standard sensitivity level, while the 120° look angle
is comparable to the medium plus sensitivity level.

The second part of this trade study examines the effect of pseudorange
measurement noise error standard deviation on the GEO satellite 3D RMS position error.
A standard deviation value of 7 meters is comparable to the standard sensitivity level in
the baseline results.

The simple GPS receiver model does not have the precision of the complex
model, but it is still relatively accurate. Using a GPS satellite look angle of 42.6° and a
pseudorange error of 7 meters, the simple model performs very similarly to the complex
model when using an ovenized crystal clock on the GEO satellite, with and without a
Rubidium TWTT reference clock. This is an additional step toward validating the

complex GPS receiver model, which provides the most realistic results.

5.2.4 Trade Study 3: Gain Pattern Models

The complex GPS receiver model uses either a simple or a complex GPS satellite
antenna gain pattern. This trade study examines the impact of various GPS satellite
antenna gain patterns on the GEO satellite 3D RMS position error.

When using a lower sensitivity GPS receiver, the difference in 3D RMS position

error values between the simple and complex GPS satellite antenna gain pattern models is
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the largest, but the percent difference is the smallest. The 3D RMS position error for a
standard sensitivity receiver will differ by 9.25 meters, which is 12% of the 3D RMS
position error when using the complex antenna gain pattern. The reverse is true for the
higher sensitivity receivers. The 3D RMS position error for an ultra high sensitivity
receiver will differ by only 2.37 meters, which is a 100% increase changing from the
complex antenna gain pattern model to the simple model. This trade study shows that the
simple GPS satellite antenna gain pattern model is accurate and correlates well with the
complex model, indicating the complex model is reliable and accurate while also

providing more realistic results.

5.2.5 Trade Study 4: Clock Type Selection

There are three different types of clock available in the simulation model for use
in the GEO satellite and the TWTT reference station. This trade study examines how
varying the clock type in both locations affects the GEO satellite 3D RMS position error.

It is immediately apparent that whenever an atomic clock is introduced, the
position results for a particular GPS receiver sensitivity level reach maximum accuracy.
If a Rubidium clock is placed on the GEO satellite and no TWTT measurements are used,
the end result is the same as having an ovenized crystal clock on the GEO satellite and a
Rubidium clock as the TWTT reference. This trade study suggests that TWTT will allow

any satellite to benefit from an atomic clock without the burden of carrying one on orbit.

5.2.6 Trade Study 5: TWTT Measurement Noise Error

This trade study examines the effects of altering the TWTT measurement error

standard deviation value on the GEO satellite 3D RMS position error. The default
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standard deviation value throughout the simulation runs is 0.3 meters, which is
representative of a sophisticated TWTT setup.

The TWTT measurement accuracy does not appear to have much effect on the 3D
RMS position error of a GEO satellite. When using a standard sensitivity GPS receiver,
changing the TWTT measurement error standard deviation from 10 meters to 3 meters
gains approximately 3 meters of position accuracy, or 4%. When using a higher
sensitivity receiver, the 3D RMS position accuracy improvement is on the order of
centimeters. This trade study indicates that a TWTT measurement error standard

deviation value smaller than 0.3 meters gains relatively nothing.

5.2.7 Additional TWTT Study — Reference Clock Locked to GPS Time

This additional study addressed a TWTT scenario where the reference clock is set
to match GPS time. This will allow the GPS receiver to maintain the exact time as the
GPS satellites. As a result, the pseudorange measurements will have all clock error
removed, allowing the calculation of a three-dimensional position with only three
satellites, since clock error no longer needs to be solved. This configuration will allow
more than three times the amount of positioning accuracy as compared to the scenario

using an atomic clock in the TWTT system.

5.2.8 Overall Results

The first three trade studies provide key information that allows a deeper
understanding of the simulation model. By varying parameters and exploring the results,
the model can be validated, ensuring that the output is reasonable and accurate. The

mechanics of the simple GPS receiver model are relatively easy to test and confirm, so
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using the simple model to help validate the complex model is a natural step towards a
reliable simulation.

The last two trade studies examine the concept of aiding GPS pseudorange
positioning with TWTT, and explore the benefits and limitations of such a system. By
testing different clock configurations and TWTT measurement noise error values it is
confirmed that a single atomic clock placed anywhere in the system can provide an
increase in positioning accuracy, anywhere from 21-38%. By creating a reference clock

that is synchronized with GPS time, the positioning accuracy increases by 70%.

5.3 Recommendations for Future Research

5.3.1 Improve Simulation Fidelity

There are many aspects of the simulation model that have the potential for
enhancement. This research was focused on the accuracy improvements that TWTT
measurements offer, not on complicated orbital dynamics, sophisticated signal
transmission and reception mechanics, or the inclusion of all possible error sources. The
following paragraphs describe portions of the simulation model that could be improved to
include many of the items discussed above.

The simulation could be enhanced to model each GPS satellite appropriately by
using specific information on the individual Block of GPS satellite used by each PRN.
Currently, the simulation uses the same transmit antenna gain pattern and transmit power
for all GPS satellites. Obviously, every single GPS satellite in orbit is not a Block II/ITA
variant, so the simulation model should more accurately represent all of the current

satellite variants in orbit. Some of the newer GPS satellites provide higher transmit
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power, which could provide greater three-dimensional positioning accuracy than this
simulation indicates.

Similarly, the simulation should model the actual GPS receiver that is built into
the GEO satellite. The simulation currently uses a low-cost, off-the-shelf GPS receiver
patch antenna that provides 4dB gain or less. If the GEO satellite is using a higher-
quality antenna that provides higher receiver gain, the results would also provide a
greater positioning accuracy than indicated in this research.

A sophisticated propagation model (not just simple two-body dynamics) for the
GEO satellite orbit truth propagation and filter propagation should be developed. The
simple propagator does not account for perturbations in the Earth’s gravity field, the
gravity of the sun and moon, solar wind pressure, atmospheric drag, or any other high-
order phenomenon. These effects could alter the results of the simulation, and should be

modeled for complete accuracy.

5.3.2 Investigate a Non-standard GPS Receiver Antenna on the GEO Satellite

This simulation assumes that the GPS receiver points directly to the center of the
Earth and has maximum gain at a zero degree look angle (boresight). From GEO, the
Earth blocks most of the GPS satellites from view, so all visible GPS satellites will be at
an angle from the GEO satellite. It is intuitive that the GPS receiver antenna should not
have maximum gain that points toward the center of the earth if the received signals will
come from an angle. Instead, the GEO satellite GPS receiver antenna should have
maximum gain at an angle that will coincide with the direction of the visible GPS

satellites.
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A GPS satellite transmit antenna uses a gain pattern with maximum gain at
approximately 10°, providing the maximum signal power to the limb of the Earth where
atmospheric loss will be the greatest for a ground user. It is recommended that the GEO
satellite GPS receiver have a similar gain pattern, allowing the maximum signal power
reception to be in line with the visible GPS satellites. By boosting received signal power
in this manner, the pseudorange measurement noise errors will be reduced, providing

more accurate navigation information.
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Appendix A — GPS Satellite Visibility Plots
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Figure A.1: GPS Satellite Visibility from GEO for Standard Sensitivity Reciever (32 dB-Hz cutoff)
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Figure A.2: GPS Satellite Visibility from GEO for Standard Plus Sensitivity Reciever (27 dB-Hz
cutoff)
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Figure A.3: GPS Satellite Visibility from GEO for Medium Sensitivity Reciever (22 dB-Hz cutoff)
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Figure A.4: GPS Satellite Visibility from GEO for Standard Plus Sensitivity Reciever (17 dB-Hz
cutoff)
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Figure A.5: GPS Satellite Visibility from GEO for High Sensitivity Reciever (12 dB-Hz cutoff)

Mumber of Yisible Satellites vs. Time
23 T T T T

Mumber of Wisible Satellites

14 1 1 1 1
0 5 10 15 20

Tirme (hours)

Figure A.6: GPS Satellite Visibility from GEO for Ultra High Sensitivity Reciever (7 dB-Hz cutoff)
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